欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (5): 1351-1360.doi: 10.3724/SP.J.1006.2024.32027

• 研究简报 • 上一篇    

水稻OsCNGC10基因抗倒伏性以及抗旱性功能研究

朱忠林1(), 文月1, 周棋1, 巫燕飞1, 杜雪竹1,2,*(), 盛锋1,*()   

  1. 1湖北大学生命科学学院 / 省部共建生物催化与酶工程国家重点实验室, 湖北武汉 430062
    2湖北洪山实验室, 湖北武汉 430062
  • 收稿日期:2023-07-20 接受日期:2024-01-12 出版日期:2024-05-12 网络出版日期:2024-02-19
  • 通讯作者: 盛锋, E-mail: shengfsk@163.com; 杜雪竹, E-mail: duxeuzhusk@163.com
  • 作者简介:E-mail: 1418369969@qq.com
  • 基金资助:
    武汉市生物技术关键技术科技重大专项(2022021302024851);粮食作物种质创新与遗传改良湖北省重点实验室开放课题项目(2018lzjj01)

Mechanism of loding residence and drought tolerance of OsCNGC10 gene in rice

ZHU Zhong-Lin1(), WEN Yue1, ZHOU Qi1, WU Yan-Fei1, DU Xue-Zhu1,2,*(), SHENG Feng1,*()   

  1. 1School of Life Sciences, Hubei University / State Key Laboratory of Biocatalysis and Enzyme Engineering, Wuhan 430062, Hubei, China
    2Hubei Hongshan Laboratory, Wuhan 430062, Hubei, China
  • Received:2023-07-20 Accepted:2024-01-12 Published:2024-05-12 Published online:2024-02-19
  • Contact: E-mail: shengfsk@163.com; E-mail: duxeuzhusk@163.com
  • Supported by:
    Wuhan Municipal Key Technology Project of Biotechnology(2022021302024851);Hubei Provincial Key Laboratory of Grain Crop Germplasm Innovation and Genetic Improvement(2018lzjj01)

摘要:

环核苷酸门控离子通道是一种配体门控的阳离子通道, 存在于动物和植物体内, 是真核生物信号级联反应的重要组成部分。本研究利用水稻环核苷酸门控离子通道(cyclic nucleotide-gated channel, OsCNGC10)基因, 构建了超表达载体 pU1301-CNGC10-Flag和双靶点敲除载体pRGEB32-CRISPR/cas9-cngc10, 通过农杆菌介导的遗传转化法获得敲除和过表达材料, 并从T2代中分离到纯合植株oscngc10-2OE-CNGC10-6。转基因植株茎秆特性以及抗倒伏性分析表明, 突变体oscngc10-2茎秆强度和抗倒伏性增强; 茎秆细胞壁组织切片以及组织成分分析则表明突变体oscngc10-2植株抗倒伏性增强是由于茎秆细胞壁茎壁厚度、薄壁组织细胞丰度以及木质素含量增加所致; 过表达OsCNGC10降低了茎秆壁厚、茎秆木质素含量以及茎秆细胞壁细胞丰度, 敲除OsCNGC10增加了茎秆木质素含量且增加了茎秆细胞壁薄壁细胞丰度, 初步证明OsCNGC10与水稻茎秆细胞壁成分合成相关, 负调控水稻抗倒伏性; T2代田间试验结果表明, 与野生型相比, 突变体oscngc10-2植株的株高、有效穗、穗长、穗粒数、结实率、千粒重和单株产量等农艺性状显著提升; 苗期干旱胁迫实验结果表明, 在干旱胁迫下, OsCNGC10基因缺陷型植株体内丙二醛(MDA)含量积累速度加快, 且无法形成足够的游离脯氨酸, 而过表达OsCNGC10植株在遭受干旱胁迫时, 体内游离脯氨酸(Pro)含量大量升高, 且MDA积累速度相对变慢, 初步说明OsCNGC10正向调控水稻苗期抗旱性。本研究结果表明水稻OsCNGC10可能在水稻抗倒伏及抗旱方面有潜在功能, 为培育抗倒伏且高产的水稻新品种提供了理论基础和新的种质资源。

关键词: 水稻, OsCNGC10, 抗倒伏, 抗旱, 细胞壁

Abstract:

Cyclic nucleotide-gated ion channels are ligand-gated cationic channels that exist in animals and plants, which are an important part of eukaryotic signaling cascades. In this study, OsCNGC10 (cyclic nucleotide-gated channel) gene in rice was used, and the overexpression vector pU1301-CNGC10-Flag and the double-target knockout vector pRGEB32-CRISPR/cas9-cngc10 were constructed. The knockout and overexpression materials were obtained by Agrobacterium-mediated genetic transformation. Homozygous plants oscngc10-2 and OE-CNGC10-6 were isolated from T2 generation. The analysis of stem characteristics and lodging resistance of transgenic plants showed that oscngc10-2 had enhanced stem strength and lodging resistance. Stem cell wall sections and tissue composition analysis showed that oscngc10-2 increased lodging resistance due to the increase of stem wall thickness, parenchyma cell abundance, and lignin content. The knockout of OsCNGC10 increased the lignin content and the abundance of stem-cell wall parenchyma cells. The overexpression of OsCNGC10 reduced stem wall thickness, lignin content, and cell abundance in stem cell wall, while the knockdown of OsCNGC10 increased lignin content and increased the abundance of thin-walled cells in stem cell wall, suggesting that OsCNGC10 was associated with the composition of stem cell wall and negatively regulated lodging resistance in rice. T2 generation field experiment indicated that compared with the wild type, oscngc10-2 significantly increased plant height, the effective panicle length, panicle number, seed setting rate, 1000-grain weight, and yield per plant. The results of drought stress at seedling stage showed that malondialdehyde (MDA) content accumulated rapidly in OsCNGC10 defective plants under drought stress and insufficient free proline (Pro) was formed, while the free Pro content in OsCNGC10 plants was significantly increased. Moreover, the MDA accumulation rate was relatively slow, which preliminarily indicated that OsCNGC10 positively regulated the drought resistance at seedling stage. The results of this study indicated that OsCNGC10 might have a potential function in lodging resistance and drought resistance in rice, which providing a theoretical basis and new germplasm resources for the breeding lodging resistance and high yield of new rice varieties.

Key words: rice, OsCNGC10, lodging resistance, drought tolerance, cell wall

表1

本研究所用核苷酸序列及相应引物"

名称Primer name 序列Primer sequence (5'-3') 用途Usage
OsCNGC10-F ATGTTTGGGGCGGGGAAGGTGGACG 基因扩增
OsCNGC10-R TTACTCACAGGGTTCAGCTGAAAAAT Gene amplification
OsCNGC10-Flag-F GAACGATAGCCGGTACCATGTTTGGGGCGGGGAAGGT 带载体接头的基因扩增引物
OsCNGC10-Flag-R CTTTGTAATCGGATCCCTCACAGGGTTCAGCTGAAA Primers for gene amplification with vector connectors
L5AD5-F CAGATGATCCGTGGCAACaaagcaccagtggtctag 获得串联结构
L5AD5-R TTTCTAGCTCTAAAACaaaaaaaaaagcaccgactcg Obtaining a tandem structure
OsCNGC10-sgRNA1-F TCAAGAGGCAGAGAACCGTGgttttagagctagaaata 获得串联结构
OsCNGC10-sgRNA1-R CACGGTTCTCTGCCTCTTGAtgcaccagccgggaat Obtaining a tandem structure
OsCNGC10-sgRNA2-F CACGGTTCTCTGCCTCTTGAtgcaccagccgggaat 获得串联结构
OsCNGC10-sgRNA2-R CGCAATTTCCTTTGGATCCGtgcaccagccgggaat Obtaining a tandem structure
S5AD5-F CAGATGATCCGTGGCAACaaag 获得串联结构
S5AD5-R TTTCTAGCTCTAAAACaaaa Obtaining a tandem structure
OsCNGC10-target1-F GCGGTGTGGTTGACGAGTTC 靶点1序列
OsCNGC10-target1-R GCCAAATCACTCGCAGGTCG Sequence of target site 1
OsCNGC10-target2-F ATTGGGACAGACAGGCATTT 靶点2序列
OsCNGC10-target2-R GTCCTTAGTGTGGTCTGGGC Sequence of target site 2
Hyg-F ACGGTGTCGTCCATCACAGTTTGCC 转基因植株阳性鉴定
Hyg-R TTCCGGAAGTGCTTGACATTGGGG Identification of the positive transgenic plan
OsCNGC10-RT-F TACCACCACTGAGAACGATGT OsCNCG10表达量分析
OsCNGC10-RT-R TACCACCACTGAGAACGATGT Relative expression analysis of OsCNGC10

图1

OsCNGC10超表达载体菌落PCR M: Trans 2K; 1~8: 菌落PCR片段。"

图2

OsCNGC10敲除终载体菌落PCR检测 M: Trans 2K; 1~8: 菌落PCR片段。"

图3

T0代转基因植株的阳性鉴定 (A): 转基因植株阳性鉴定; (B): 超表达株系表达量分析; (C): 敲除株系oscngc10-2靶点解码分析。M: Trans 2K; N: 阴性对照。"

图4

转基因植株及野生型(WT)株型 (A): 转基因材料以及野生型田间抽穗期表型; (B): 转基因材料以及野生型田间成熟期表型; (C): 转基因材料以及野生型抽穗期单株表型; (D): 转基因材料以及野生型成熟期单株表型。"

图 5

转基因植株及野生型(WT)基部节间形态"

表2

转基因植株与野生型茎秆强度分析"

性状
Characteristics
野生型日本晴
Wild type
突变体
Mutant oscngc10-2
超表达
Overexpression CNCG10-6
基部节间距Basal segmental spacing (cm) 9.51±1.36 4.88±0.88** 8.91±1.22
外茎 Outer stem (mm) 3.57±0.45 5.79±0.68* 3.25±0.12
内径 Inner diameter (mm) 2.34±0.45 3.89±0.68* 2.19±0.12
壁厚Thickness of wall (mm) 1.23±0.21 1.90±0.40* 1.24±0.13
茎秆强度Strength of stem (N) 8.13±1.18 24.97±8.02** 9.08±3.04

图6

转基因植株与野生型(WT)组织切片显微镜观察 CWT: 茎壁厚度; SWT: 秆壁厚度。"

图7

转基因植株与野生型(WT)细胞壁主要成分分析 Cellulose: 纤维素; Lignin: 木质素; Hemicellulose: 半纤维素。 *表示在0.05概率水平显著相关。"

表3

转基因植株与野生型(WT)农艺性状分析"

性状
Characteristics
野生型日本晴
Wild type
突变体
Mutant oscngc10-2
超表达
Overexpression CNCG10-6
生育期Growth period (d) 130 137 121
株高Plant height (cm) 73.23±2.91 90.97±3.22** 63.73±2.83
穗长Panicle length (cm) 15.16±1.43 18.35±2.25* 13.10±1.23
分蘖数Tiller number per plant 32.67±2.52 33.00±2.65 50.00±3.50**
每穗粒数Number of grain per panicle 105.00±4.99 237.00±8.85** 60.00±2.25
一次枝梗数Primary branch number per panicle 8.00±0.41 18.00±0.97* 8.00±0.39
二次枝梗数Secondary branch number per panicle 8.00±0.51 29.00±1.33* 3.00±0.12
千粒重Thousand-seed weight (g) 19.50±0.65 22.50±0.98* 15.10±0.56
理论产量Theoretical yield (t hm-2) 10.80±0.23 12.20±0.35* 6.90±0.11*
结实率Seed fertility (%) 86.50±0.68 93.80±1.90* 80.20±1.30

图8

转基因植株与野生型(WT)苗期干旱胁迫15 d表型以及存活率 *表示在0.05概率水平显著相关。标尺为20 cm。"

图9

转基因植株与野生型(WT)苗期干旱胁迫15 d后Pro及MDA含量 A: 植株叶片脯氨酸含量; B: 植株叶片丙二醛含量。***表示在0.01概率水平显著相关; *表示在0.05概率水平显著相关。"

[1] 国家统计局关于2022年粮食产量数据的公告. 中国信息报, (2022-12-13) (001).
Announcement of the National Bureau of Satistics on Grain Production Data for 2022. China Information News, (2022-12-13) (001).
[2] Lang Y Z, Yang X D, Wang M E, Zhu Q S. Effects of lodging at different filling stages on rice yield and grain quality. Rice Sci, 2012, 19: 315-319.
doi: 10.1016/S1672-6308(12)60056-0
[3] Chin K, Moeder W, Yoshioka K. Biological roles of cyclic-nucleotide-gated ion channels in plants: what we know and don't know about this 20 member ion channel family. Botany, 2009, 87: 668-677.
doi: 10.1139/B08-147
[4] Ma W, Qi Z, Smigel A, Walker R K, Verma R, Berkowitz G A. Ca2+, cAMP, and transduction of non-self perception during plant immune responses. Proc Natl Acad Sci USA, 2009, 106: 20995-21000.
doi: 10.1073/pnas.0905831106 pmid: 19933332
[5] Schuurink R C, Shartzer S F, Fath A, Jones R L. Characterization of a calmodulin-binding transporter from the plasma membrane of barley aleurone. Proc Natl Acad Sci USA, 1998, 95: 1944-1949.
pmid: 9465122
[6] Arazi T, Sunkar R, Kaplan B, Fromm H. A tobacco plasma membrane calmodulin-binding transporter confers Ni2+ tolerance and Pb2+ hypersensitivity in transgenic plants. Plant J, 1999, 20: 171-182.
doi: 10.1046/j.1365-313x.1999.00588.x pmid: 10571877
[7] Talke I N, Blaudez D, Maathuis F J, Sanders D. CNGCs: prime targets of plant cyclic nucleotide signalling? Trends Plant Sci, 2003, 8(6): 286-293.
pmid: 12818663
[8] Kaplan B, Sherman T, Fromm H. Cyclic nucleotide-gated channels in plants. FEBS Lett, 2007, 581: 2237-2246.
pmid: 17321525
[9] Yuan Q, Ou-Yang S, Liu J, Suh B, Cheung F, Sultana R, Lee D, Quackenbush J, Buell C R. The TIGR rice genome annotation resource: annotating the rice genome and creating resources for plant biologists. Nucleic Acids Res, 2003, 31: 229-233.
pmid: 12519988
[10] Ma W, Ali R, Berkowitz A G. Characterization of plant phenotypes associated with loss-of-function of AtCNGC1, a plant cyclic nucleotide gated cation channel. Plant Physiol Biochem, 2006, 44: 494-505
doi: 10.1016/j.plaphy.2006.08.007
[11] 朱天全. 拟南芥CNGC2CNGC4基因在耐热和抗病中的功能研究. 南京农业大学硕士学位论文, 江苏南京, 2020.
Zhu T Q. Functional Studies of Arabidopsis CNGC2 and CNGC4 Genes in Heat Tolerance and Disease Resistance. MS Thesis of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2020 (in Chinese with English abstract).
[12] Tan Y Q, Yang Y, Zhang A, Gu L L, Sun S J, Xu W, Wang L, Liu H, Wang Y F. Three CNGC family members, CNGC5, CNGC6, and CNGC9, are required for constitutive growth of Arabidopsis root hairs as Ca2+-permeable channels. Plant Commun, 2019, 1: 100001.
doi: 10.1016/j.xplc.2019.100001
[13] Jin Y, Jing W, Zhang Q, Zhang W. Cyclic nucleotide gated channel 10 negatively regulates salt tolerance by mediating Na+ transport in Arabidopsis. J Plant Res, 2015, 128: 211-220.
doi: 10.1007/s10265-014-0679-2
[14] Meral T O, Claudia R, Elizabeth B, Stephanie R, Amanda M, Sabine F, Candace T M, Rosager P L, Rui M, Jeffrey F H, Wu K Q. Cyclic nucleotide gated channels 7 and 8 are essential for male reproductive fertility. PLoS One, 2013, 8: e55277.
doi: 10.1371/journal.pone.0055277
[15] Tunc-Ozdemir M, Tang C, Ishka M R, Brown E, Groves N R, Myers C T, Rato C, Poulsen L R, McDowell S, Miller G, Mittler R, Jeffrey F H. A cyclic nucleotide-gated channel (CNGC16) in pollen is critical for stress tolerance in pollen reproductive development. Plant Physiol, 2013, 161: 1010-1020.
doi: 10.1104/pp.112.206888 pmid: 23370720
[16] 周棋, 胡琴, 杜雪竹, 巫燕飞, 盛锋. 水稻CNGCs家族的鉴定及非生物胁迫诱导表达模式分析. 分子植物育种, 2023, 21: 6625-6637.
Zhou Q, Hu Q, Du X Z, Wu Y F, Sheng F. Genome wide identification and expression analysis of CNGCs gene family in response to abiotoc stresses in rice. Mol Plant Breed, 2023, 21: 6625-6637 (in Chinese with English abstract).
[17] Van Soest P J, Robertson J B, Lewis B A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci, 1991, 74: 3583-3597.
doi: 10.3168/jds.S0022-0302(91)78551-2 pmid: 1660498
[18] Xie K B, Minkenberg B, Yang Y. Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system. Proc Natl Acad Sci USA, 2015, 112: 3570-3575.
doi: 10.1073/pnas.1420294112 pmid: 25733849
[19] 龚金龙, 邢志鹏, 胡雅杰, 张洪程, 戴其根, 霍中洋, 许轲, 魏海燕, 高辉. 籼、粳超级稻茎秆抗倒支撑特征的差异研究. 中国水稻科学, 2015, 29: 273-281.
doi: 10.3969/j.issn.1001G7216.2015.03.006
Gong J L, Xing Z P, Hu Y J, Zhang H C, Dai Q G, Huo Z Y, Xu K, Wei H Y, Gao H. Differences in stem resistance to topside support between indica and japonica super rice. Chin J Rice Sci, 2015, 29: 273-281 (in Chinese with English abstract).
[20] 雷小龙, 刘利, 刘波, 黄光忠, 马荣朝, 任万军. 杂交籼稻F优498机械化种植的茎秆理化性状与抗倒伏性. 中国水稻科学, 2014, 28: 612-620.
Lei X L, Liu L, Liu B, Huang G Z, Ma R C, Ren W J. Physicochemical properties and lodging resistance of stem in mechanized planting of hybrid indica rice F You 498. Chin J Rice Sci, 2014, 28: 612-620 (in Chinese with English abstract).
[21] Yano K, Ookawa T, Aya K, Ochiai Y, Hirasawa T, Ebitani T, Takarada T, Yano M, Yamamoto T, Fukuoka S, Wu J, Ando T, Ordonio R L, Hirano K, Matsuoka M. Isolation of a novel lodging resistance QTL gene involved in strigolactone signaling and its pyramiding with a QTL gene involved in another mechanism. Mol Plant, 2015, 8: 303-304.
doi: 10.1016/j.molp.2014.10.009 pmid: 25616386
[22] 张云辉, 张所兵, 林静, 汪迎节, 方先文. 水稻株高基因克隆及功能分析的研究进展. 中国农学通报, 2014, 30(12): 1-7.
Zhang Y H, Zhang S B, Lin J, Wang Y J, Fang X W. Research progress on cloning and functional analysis of plant height genes in rice (Oryza sativa L.). Chin Agric Sci Bull. 2014, 30(12): 1-7 (in Chinese with English abstract).
[23] 万宜珍, 马国辉. 超级杂交稻抗倒生理与形态机能研究: II.培矮64S/E32与汕优63茎秆抗倒力学差异. 湖南农业大学学报(自然科学版), 2003, (2): 92-94.
Wan Y Z, Ma G H. Studies on the Physiological and Morphological Functions of Super Hybrid Rice in Resistance to overpour: II. Differences in stem resistance to overpour between Peiai 64S/ E3 2 and Shanyou 63. J Hunan Agric Univ (Nat Sci Edn), 2003, (2): 92-94 (in Chinese with English abstract).
[24] 钟代彬, 罗利军, 梅捍卫, 王一平, 余新桥, 应存山, 黎志康, 郭龙彪. 水稻主茎总叶数及其相关性状的QTL分析. 中国水稻科学, 2001, 15: 8-13.
Zhong D B, Luo L J, Mei H W, Wang Y P, Y u X Q, Ying C S, Li Z K, Guo L B. QTL analysis of total leaf number and related traits in the main stem of rice. Chin J Rice Sci, 2001, 15: 8-13 (in Chinese with English abstract).
[25] 饶玉春, 李跃, 董国军, 曾大力, 钱前. 水稻抗倒伏研究进展. 中国稻米, 2009, (6): 15-19.
Rao Y C, Li Y, Dong G J. Zeng D L, Qian Q. Lodging resistance of rice research progress. Chin Rice, 2009, (6): 15-19 (in Chinese with English abstract).
[26] Kothari K S, Dansana P K, Giri J, Tyagi A K. Rice Stress Associated Protein 1 (OsSAP1) interacts with aminotransferase (OsAMTR1) and pathogenesis-related 1a protein (OsSCP) and regulates abiotic stress responses. Front Plant Sci, 2016, 7: 1057.
doi: 10.3389/fpls.2016.01057 pmid: 27486471
[27] Lee S C, Lee M Y, Kim S J, Jun S H, An G, Kim S R. Characterization of an abiotic stress-inducible dehydrin gene, OsDhn1, in rice (Oryza sativa L.). Mol Cells, 2005, 19: 212-218.
doi: 10.1016/S1016-8478(23)13158-X
[28] 段俊枝, 杨翠萍, 王楠, 齐学礼, 冯丽丽, 燕照玲, 齐红志, 陈海燕, 张会芳, 卓文飞, 李莹. 利用基因工程技术提高非生物胁迫下水稻产量的研究进展. 中国稻米, 2023, 29(3): 15-23.
doi: 10.3969/j.issn.1006-8082.2023.03.003
Duan J Z, Yang C P, Wang N, Qi X L, Feng L L, Yan Z L, Qi H Z, Chen H Y, Zhang H F, Zhuo W F, Li Y. Progress on improving rice yield under abiotic stress by genetic engineering. Chin Rice, 2023, 29(3): 15-23 (in Chinese with English abstract).
doi: 10.3969/j.issn.1006-8082.2023.03.003
[29] Hu H, You J, Fang Y, Zhu X Y, Qi Z Y, Xiong L Z. Characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice. Plant Mol Biol, 2010, 72: 567-568.
doi: 10.1007/s11103-010-9598-3
[30] Zhang Z, Li F, Li D, Zhang H, Huang R. Expression of ethylene response factor JERF1 in rice improves tolerance to drought. Planta, 2010, 232: 765-774.
doi: 10.1007/s00425-010-1208-8 pmid: 20574667
[31] 李兆伟, 莫祖意, 孙聪颖, 师宇, 尚平, 林伟伟, 范凯, 林文雄. OsNAC2d基因编辑水稻突变体的创建及其对干旱胁迫的响应. 作物学报, 2023, 49: 365-376.
doi: 10.3724/SP.J.1006.2023.12076
Li Z W, Mo Z Y, Sun C Y, Shi Y, Shang P, Lin W W, Fan K, Lin W X. Construction of rice mutants by gene editing of OsNAC2d and their response to drought stress. Acta Agron Sin, 2023, 49: 365-376 (in Chinese with English abstract).
[32] Wu W Y, Tang W S, Wang C X, Ge L H, Chen M. SiMYB56 confers drought stress tolerance in transgenic rice by regulating lignin biosynthesis and ABA signaling pathway. Front Plant Sci, 2020, 11: 785.
doi: 10.3389/fpls.2020.00785 pmid: 32625221
[33] 杨建昌, 王志琴, 朱庆森. 水稻品种的抗旱性及其生理特性的研究. 中国农业科学, 1995, 28(5): 65-72.
Yang J C, Wang Z Q, Zhu Q S, Study on drought resistance and physiological characteristics of rice varieties. Sci Agric Sin, 1995, 28(5): 65-72 (in Chinese with English abstract).
[34] Xu L X, Han L B, Huang B R. Antioxidant enzyme activities and gene expression patterns in leaves of Kentucky bluegrass in response to drought and post-drought recovery. J Am Soc Hortic Sci, 2011, 136: 247-255.
[1] 唐清芸, 杨晶晶, 赵蕾, 宋志文, 王国栋, 李玉祥. 施氮量对滴灌水稻根系形态构型和分形特征的影响[J]. 作物学报, 2024, 50(6): 1540-1553.
[2] 张小芳, 朱琪, 华芸堰, 贾黎惠莹, 邱士优, 陈宇杰, 马涛, 丁沃娜. 水稻OsCYP22互作蛋白的筛选及验证[J]. 作物学报, 2024, 50(6): 1628-1634.
[3] 胡明明, 丁峰, 彭志芸, 向开宏, 李郁, 张宇杰, 杨志远, 孙永健, 马均. 多元化种植模式下秸秆还田配合水氮管理对水稻产量形成与氮素吸收利用的影响[J]. 作物学报, 2024, 50(5): 1236-1252.
[4] 耿孝宇, 张翔, 刘洋, 左博源, 朱旺, 马唯一, 汪璐璐, 孟天瑶, 高平磊, 陈英龙, 许轲, 戴其根, 韦还和. 江苏省滨海盐碱地籼粳杂交稻产量优势形成特征[J]. 作物学报, 2024, 50(5): 1253-1270.
[5] 万应春, 班义结, 蒋钰东, 王亚欣, 刘晶晶, 刘晓晴, 程育林, 王楠, 冯萍. 水稻雄性不育突变体tpa1的表型鉴定与精细定位[J]. 作物学报, 2024, 50(5): 1104-1114.
[6] 余瑶, 王紫瑶, 周思睿, 刘鹏程, 叶亚峰, 马伯军, 刘斌美, 陈析丰. 水稻类病变突变体lms1的表型鉴定与抗病分子机制分析[J]. 作物学报, 2024, 50(4): 857-870.
[7] 王吕, 吴玉红, 秦宇航, 淡亚彬, 陈浩, 郝兴顺, 田霄鸿. 紫云英稻秸秆协同还田与氮肥减量配施对水稻干物质积累、氮素转运及产量的影响[J]. 作物学报, 2024, 50(3): 756-770.
[8] 张丽洁, 周海宇, MUHAMMAD Zeshan, MUNSIF Ali Shad, 杨明冲, 李波, 韩世健, 张翠翠, 胡利华, 王令强. 水稻花粉小肽锌指蛋白基因OsFLZ13功能研究[J]. 作物学报, 2024, 50(3): 543-555.
[9] 韦还和, 张翔, 朱旺, 耿孝宇, 马唯一, 左博源, 孟天瑶, 高平磊, 陈英龙, 许轲, 戴其根. 盐胁迫对水稻籽粒灌浆特性及产量形成的影响[J]. 作物学报, 2024, 50(3): 734-746.
[10] 吴宇, 刘磊, 崔克辉, 齐晓丽, 黄见良, 彭少兵. 低氮条件下超级杂交稻苗期根系特征的变化及与其高氮素积累的关系[J]. 作物学报, 2024, 50(2): 414-424.
[11] 吴昊, 张瑛, 王琛, 顾汉柱, 周天阳, 张伟杨, 顾骏飞, 刘立军, 杨建昌, 张耗. 栽培优化对长江下游水稻灌浆期根系特征和稻米淀粉特性的影响[J]. 作物学报, 2024, 50(2): 478-492.
[12] 李明月, 张文婷, 李阳, 张保龙, 杨立明, 王金彦. 小肽Ospep5对水稻耐镉性的影响[J]. 作物学报, 2024, 50(1): 67-75.
[13] 徐高峰, 申时才, 张付斗, 杨韶松, 金桂梅, 郑凤萍, 温丽娜, 张云, 吴冉迪. 土壤微生物对长雄野生稻及其化感潜力后代抑草作用的影响[J]. 作物学报, 2023, 49(9): 2562-2571.
[14] 胡艳娟, 薛丹, 耿嫡, 朱末, 王天穹, 王晓雪. 水稻OsCDF1基因突变效应及其基因组变异分析[J]. 作物学报, 2023, 49(9): 2362-2372.
[15] 刘凯, 陈积金, 刘帅, 陈旭, 赵新茹, 孙尚, 薛超, 龚志云. 低温胁迫下组蛋白H3K18cr在水稻全基因组上的动态变化特征解析[J]. 作物学报, 2023, 49(9): 2398-2411.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .