作物学报 ›› 2024, Vol. 50 ›› Issue (7): 1740-1749.doi: 10.3724/SP.J.1006.2024.34185
ZHOU Hong-Yuan(), YANG Hui-Qin, LUO Wei, SHI Zhen-Ming, MA Ling*()
摘要:
马铃薯是世界第三大粮食作物。绿原酸是马铃薯中最主要的酚类化合物, 也是马铃薯抗虫抗病的物质基础之一, 但过量绿原酸会影响薯块的口感。因此, 培育地上部分高绿原酸含量而薯肉中低绿原酸含量的品种能很好的兼顾马铃薯抗病性及品质口感的需求。为了明确马铃薯中绿原酸的分子调控机制, 本研究以绿原酸合成关键酶基因StHQT的启动子序列为诱饵, 进行酵母单杂交文库筛选, 鉴定出一个AT-hook基因家族的转录因子StAHL。进一步对StAHL的生物信息学特征、表达模式、蛋白质产物的亚细胞定位等信息进行了系统分析, 并利用酵母单杂交和双荧光素酶报告试验等方法验证了StAHL与StHQT启动子之间的转录活性。结果表明StAHL基因的表达没有组织特异性, 但根与花中的表达量相对较高, 其蛋白产物包含AT-Hook、DUF296两个保守结构域, 且定位于细胞核中。StAHL蛋白能直接作用于StHQT的启动子序列, 并抑制其转录活性, 表明StAHL可能通过抑制StHQT的表达来抑制马铃薯中绿原酸的积累。研究结果为全面揭示马铃薯绿原酸生物合成的分子机制奠定了基础, 为马铃薯精准育种提供了分子靶标。
[1] | Akyol H, Riciputi Y, Capanoglu E, Caboni M F, Verardo V. Phenolic compounds in the potato and its byproducts: an overview. Int J Mol Sci, 2016, 17: 835-853. |
[2] |
Leiss K A, Maltese F, Choi Y H, Verpoorte R, Klinkhamer P G. Identification of chlorogenic acid as a resistance factor for thrips in chrysanthemum. Plant Physiol, 2009, 150: 1567.
doi: 10.1104/pp.109.138131 pmid: 19448039 |
[3] |
Kumar P, Ortiz E V, Garrido E, Poveda K, Jander G. Potato tuber herbivory increases resistance to aboveground lepidopteran herbivores. Oecologia, 2016, 182: 177-187.
doi: 10.1007/s00442-016-3633-2 pmid: 27147449 |
[4] | Lee G, Joo Y, Kim S G, Baldwin I T. What happens in the pith stays in the pith: tissue-localized defense responses facilitate chemical niche differentiation between two spatially separated herbivores. Plant J, 2017, 92: 414-425. |
[5] | Guo X Z, Ning Z X. Natural phenolic compounds and their health effects. Food Ind, 2002, 23: 28-29. |
[6] | Hua X Y, Tao S, Sun S N, Guo N, Yan X F, Lin J X. Research progress of plant secondary metabolites-phenolic compounds. Bull Biotechnol, 2017, 33: 22-29. |
[7] | Sinden S L, Deahl K L, Aulenbach B B. Effect of glycoalkaloids and phenolics on potato flavor. J Food Sci, 1976, 41: 520-523. |
[8] | Ulbrich B, Zenk M H. Partial purification and properties of hydroxycinnamoyl-CoA: quinate hydroxycinnamoyl transferase from higher plants. Phytochemistry, 1979, 18: 929-933. |
[9] |
Niggeweg R, Michael A J, Martin C. Engineering plants with increased levels of the antioxidant chlorogenic acid. Nat Biotechnol, 2004, 22: 746-754.
doi: 10.1038/nbt966 pmid: 15107863 |
[10] |
Sonnante G D, Amore R, Blanco E, Pierri C L, Palma M, Luo J, Tucci M, Martin C. Novel hydroxycinnamoyl-coenzyme A quinate transferase genes from artichoke are involved in the synthesis of chlorogenic acid. Plant Physiol, 2010, 153: 1224-1238.
doi: 10.1104/pp.109.150144 pmid: 20431089 |
[11] |
Payyavula R S, Shakya R, Sengoda V G, Munyaneza J E, Swamy P, Navarre D A. Synthesis and regulation of chlorogenic acid in potato: rerouting phenylpropanoid flux in HQT-silenced lines. Plant Biotechnol J, 2015, 13: 551-564.
doi: 10.1111/pbi.12280 pmid: 25421386 |
[12] | Chen Z X, Liu G H, Liu Y Q, Xian Z Q, Tang N. Overexpression of the LmHQT1 gene increases chlorogenic acid production in Lonicera macranthoides Hand-Mazz. Acta Physiol Plant, 2017, 39: 27. |
[13] |
Yun J, Kim Y S, Jung J H, Seo P J, Park C M. The AT-hook motif-containing protein AHL22 regulates flowering initiation by modifying FLOWERING LOCUS T chromatin in Arabidopsis. J Biol Chem, 2012, 287: 15307-15316.
doi: 10.1074/jbc.M111.318477 pmid: 22442143 |
[14] |
Aravind L, Landsman D. AT-hook motifs identified in a wide variety of DNA-binding proteins. Nucleic Acids Res, 1998, 26: 4413-4421.
doi: 10.1093/nar/26.19.4413 pmid: 9742243 |
[15] | Zhao J, Favero D S, Peng H, Neff M M. Arabidopsis thaliana AHL family modulates hypocotyl growth redundantly by interacting with each other via the PPC/DUF296 domain. Proc Natl Acad Sci USA, 2013, 110: E4688-E4697. |
[16] |
Huth J R, Bewley C A, Nissen M S, Evans J N, Reeves R, Gronenborn A M, Clore G M. The solution structure of an HMG-I(Y)-DNA complex defines a new architectural minor groove binding motif. Nat Struct Biol, 1997, 4: 657-665.
doi: 10.1038/nsb0897-657 pmid: 9253416 |
[17] | Xiao C, Chen F, Yu X, Lin C, Fu Y F. Over-expression of an AT-hook gene AHL22 delays flowering and inhibits the elongation of the hypocotyl in Arabidopsis thaliana. Plant Mol Biol, 2009, 71: 39-50. |
[18] | Zhang W M, Cheng X Z, Fang D, Cao J. AT-HOOK MOTIF NUCLEAR LOCALIZED (AHL) proteins of ancient origin radiate new functions. Int J Biol Macromol, 2022, 214: 290-300. |
[19] |
Lim P O, Kim Y, Breeze E, Koo J C, Woo H R, Ryu J S, Park D H, Beynon J, Tabrett A, Buchanan-Wollaston V, Nam H G. Overexpression of a chromatin architecture-controlling AT-hook protein extends leaf longevity and increases the post-harvest storage life of plants. Plant J, 2007, 52: 1140-1153.
pmid: 17971039 |
[20] |
Wong M M, Bhaskara G B, Wen T N, Lin W D, Nguyen T T, Chong G L, Verslues P E. Phosphoproteomics of Arabidopsis highly ABA-induced1 identifies AT-Hook-Like10 phosphorylation required for stress growth regulation. Proc Natl Acad Sci USA, 2019, 116: 2354-2363.
doi: 10.1073/pnas.1819971116 pmid: 30670655 |
[21] | Yadeta K A, Hanemian M, Smit P, Hiemstra J A, Pereira A, Marco Y, Thomma B P. The Arabidopsis thaliana DNA-binding protein AHL19 mediates Verticillium wilt resistance. Mol Plant-Microbe Interact, 2011, 24: 1582-1591. |
[22] | Wang L, Li T, Liu N, Liu X. Identification of tomato AHL gene families and functional analysis their roles in fruit development and abiotic stress response. Plant Physiol Biochem, 2023, 202: 107931. |
[23] |
Kumar A, Singh S, Mishra A. Genome-wide identification and analyses of the AHL gene family in rice (Oryza sativa). 3 Biotech, 2023, 13: 248.
doi: 10.1007/s13205-023-03666-0 pmid: 37366497 |
[24] | Zhou L, Liu Z, Liu Y, Kong D, Li T, Yu S, Mei H, Xu X, Liu H, Chen L, Luo L. A novel gene OsAHL1 improves both drought avoidance and drought tolerance in rice. Sci Rep, 2016, 6: 30264. |
[1] | 刘园园, 董建科, 应静文, 梅文祥, 程刚, 郭晶晶, 焦文标, 宋波涛. 利用野生种Solanum boliviense创制马铃薯抗寒种质[J]. 作物学报, 2024, 50(6): 1384-1393. |
[2] | 刘震, 陈丽敏, 李志涛, 朱金勇, 王玮璐, 齐喆颖, 姚攀锋, 毕真真, 孙超, 白江平, 刘玉汇. 马铃薯ARM基因家族的全基因组鉴定及表达分析[J]. 作物学报, 2024, 50(6): 1451-1466. |
[3] | 赵娜, 刘宇曦, 张朝澍, 石瑛. 不同马铃薯淀粉含量差异的转录组学解析[J]. 作物学报, 2024, 50(6): 1503-1513. |
[4] | 李万, 李成, 程敏, 吴芳. 磷转运蛋白StPHO1.2提高马铃薯耐热性[J]. 作物学报, 2024, 50(2): 394-402. |
[5] | 刘洁, 蔡诚诚, 刘石锋, 邓孟胜, 王雪枫, 温和, 李罗品, 严奉君, 王西瑶. 马铃薯StCYP85A3促进萌芽及根系伸长的功能解析[J]. 作物学报, 2023, 49(9): 2462-2471. |
[6] | 索海翠, 刘计涛, 王丽, 李成晨, 单建伟, 李小波. 马铃薯锌转运蛋白基因StZIP12调控锌吸收功能[J]. 作物学报, 2023, 49(7): 1994-2001. |
[7] | 赵喜娟, 刘圣宣, 刘腾飞, 郑洁, 杜鹃, 胡新喜, 宋波涛, 何长征. 转录组分析揭示光诱导转录因子StMYB113调控马铃薯块茎表皮叶绿素合成[J]. 作物学报, 2023, 49(7): 1860-1870. |
[8] | 王硕, 鲍天旸, 刘建刚, 段绍光, 简银巧, 李广存, 金黎平, 徐建飞. 基于RGB颜色空间评价马铃薯块茎绿化程度[J]. 作物学报, 2023, 49(4): 1102-1110. |
[9] | 李红艳, 李洁雅, 李响, 叶广继, 周云, 王舰. 过表达LrAN2基因对马铃薯中花青素和糖苷生物碱含量的影响[J]. 作物学报, 2023, 49(4): 988-995. |
[10] | 张卫娜, 余慧芳, 安珍, 柳文凯, 康益晨, 石铭福, 杨昕宇, 张茹艳, 王勇, 秦舒浩. StEFR1正调控马铃薯对晚疫病的抗性[J]. 作物学报, 2023, 49(4): 996-1005. |
[11] | 赵朋, 陈广侠, 张宴萍, 杨晓慧, 刘芳, 董道峰. 马铃薯苗期耐碱性鉴定方法及86份种质资源耐碱性综合评价[J]. 作物学报, 2023, 49(11): 2923-2934. |
[12] | 朱金勇, 刘震, 曾钰婷, 李志涛, 陈丽敏, 李泓阳, 史田斌, 张俊莲, 白江平, 刘玉汇. 马铃薯PAL基因家族的全基因组鉴定及其在非生物胁迫下和块茎花色素苷合成中的表达分析[J]. 作物学报, 2023, 49(11): 2978-2990. |
[13] | 巩慧玲, 林红霞, 任小丽, 李彤, 王晨霞, 白江平. StvacINV1负调控马铃薯的耐旱性[J]. 作物学报, 2023, 49(11): 3007-3016. |
[14] | 赵富贵, 张龙, 李丹, 韩固, 王楠, 侯贤清. 不同气候年型下耕作覆盖对宁南旱区土壤水热及马铃薯产量的影响[J]. 作物学报, 2023, 49(10): 2806-2819. |
[15] | 杜鹃, 彭晓君, 侯娟, 刘腾飞, 刘增, 宋波涛. 马铃薯淀粉酶StBAM9互作蛋白的鉴定及其互作机制分析[J]. 作物学报, 2023, 49(10): 2643-2653. |
|