欢迎访问作物学报,今天是

作物学报 ›› 2025, Vol. 51 ›› Issue (6): 1467-1479.doi: 10.3724/SP.J.1006.2025.42052

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

水稻内卷叶突变体acl3的鉴定及调控基因的功能分析

雷松翰(), 范骏扬, 车艳奕, 代永东, 郑雨萌, 田维江, 桑贤春(), 王晓雯()   

  1. 西南大学农学与生物科技学院, 重庆 400715
  • 收稿日期:2024-12-02 接受日期:2025-03-26 出版日期:2025-06-12 网络出版日期:2025-04-09
  • 通讯作者: *王晓雯, E-mail: xwwang78@126.com;桑贤春, E-mail: sangxianchun@163.com
  • 作者简介:E-mail: Leisonghan11@126.com
  • 基金资助:
    本研究由重庆市现代农业产业技术体系项目(CQMAITS202401);国家重点研发计划项目(2022YFD1201600);国家级大学生创新创业训练计划项目(202410635004)

Identification of an adaxially-curled-leaf mutant acl3 and function analysis of the regulated gene in rice (Oryza sativa L.)

LEI Song-Han(), FAN Jun-Yang, CHE Yan-Yi, DAI Yong-Dong, ZHENG Yu-Meng, TIAN Wei-Jiang, SANG Xian-Chun(), WANG Xiao-Wen()   

  1. College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
  • Received:2024-12-02 Accepted:2025-03-26 Published:2025-06-12 Published online:2025-04-09
  • Contact: *E-mail: xwwang78@126.com;E-mail: sangxianchun@163.com
  • Supported by:
    the Chongqing Modern Agricultural Industry Technology System(CQMAITS202401);the National Key Research and Development Program of China(2022YFD1201600);the College Students’ Innovation and Entrepreneurship Training Scientific Research Project(202410635004)

摘要:

适度卷叶有利于异交结实和提高作物群体光合效率, 在杂交水稻制种及生产中具有重要的应用价值。我们从甲基磺酸乙酯EMS诱变体库中鉴定到1个稳定遗传的内卷叶突变体acl3 (adaxially curled leaf 3), 该突变体表现出株高和结实率降低、千粒重极显著提高。石蜡切片表明, 叶片上表皮维管束间的泡状细胞数量减少和面积变小是导致acl3极度内卷的主要原因。遗传分析表明, acl3的突变性状受1对单隐性核基因调控, 初步定位在第7染色体Indel标记07g89和07g498之间409 kb的物理范围内。对突变体acl3及其野生型西大1B进行全基因组测序, 利用IGV软件查找acl3定位区间的序列差异, 发现注释基因LOC_Os07g01240/SRL1/CLD1在第6外显子上存在1个G到A的碱基替换, 初步确定为候选基因。通过构建互补载体转化突变体acl3, 表型鉴定结果显示互补植株的卷叶、株高、籽粒大小等突变性状均恢复至野生型水平, 表明ACL3SRL1的一个新等位基因, 并具有“一因多效”的特性。qRT-PCR分析结果显示, 卷叶相关基因REL2NAL7极显著上调; 进一步分析生长素(IAA)途径相关基因的表达变化发现, 生长素合成基因YUCCA2、应答基因ARF1ARF7、原初响应基因IAA10IAA21IAA22等均有不同程度的上调, 这表明ACL3可能通过生长素途径调控水稻株型的发育过程。

关键词: 水稻(Oryza sativa L.), 泡状细胞, 卷叶, SRL1, 生长素

Abstract:

Moderate leaf curling is beneficial for cross-pollination, fruit set, and enhancing the photosynthetic efficiency of crop canopies, making it highly valuable for hybrid rice seed production and cultivation. To elucidate the molecular mechanisms underlying leaf rolling in rice, we identified a stably inherited adaxial leaf-rolling mutant, acl3 (adaxially curled leaf 3), from an ethyl methanesulfonate (EMS)-mutagenized population. In addition to leaf curling, acl3 exhibits reduced plant height and seed-setting rate, along with a highly significant increase in 1000-grain weight. Histological analysis using paraffin sections revealed that the extreme curling in acl3 primarily results from a reduction in both the number and area of bulliform cells between vascular bundles in the adaxial epidermis. Genetic analysis indicated that the acl3 mutant phenotype is controlled by a single recessive nuclear gene, which was preliminarily mapped to a 409 kb physical region between Indel markers 07g89 and 07g498 on chromosome 7. Whole-genome sequencing of acl3 and the wild-type Xida 1B was performed, and sequence variations within the acl3 mapping interval were identified using IGV software. A G-to-A base substitution was detected in the sixth exon of the annotated gene LOC_Os07g01240/SRL1/CLD1, leading to a structural change in the encoded protein. This gene was preliminarily identified as the candidate gene for ACL3. Complementary vector construction and transformation of the acl3 mutant restored the mutant traits—leaf curling, plant height, and grain size to wild-type levels, confirming that ACL3 is a new allele of SRL1 with pleiotropic effects. Quantitative real-time PCR (qRT-PCR) analysis revealed highly significant upregulation of leaf-rolling-related genes REL2 and NAL7. Further investigation of auxin IAA pathway-related genes showed that auxin synthesis gene YUCCA2, auxin response genes ARF1 and ARF7, and primary auxin response genes IAA10, IAA21, and IAA22 were all upregulated to varying degrees, suggesting that ACL3 may regulate rice plant architecture development through the auxin signaling pathway.

Key words: rice (Oryza sativa L.), bulliform cells, curled leaf, SRL1, auxin

表1

基因定位及qRT-PCR所用引物序列"

引物名称
Primer name
正向引物
Forward primer (5′-3′)
反向引物
Reverse primer (5′-3′)
07g20 GCCACTTATCCAAATGCCCTT GCTGGGCCAAAGGAGAGAGG
07g89 GCTGCTACTCGATGATGATGATC TCTTCTTCCAGGACCAGCTTGC
07g498 CGGATTGAAACCCATCCACC ATGTTGGGTGGACGTGGATG
07g798 TGATGTCCGAAGTCAAGGTGC GCTTAACCGCAAACGTGGATT
ACTIN GACCCAGATCATGTTTGAGACCT CAGTGTGGCTGACACCATCAC
ADL1 AATGGAATGGTCCGTGGTCAG CACCTGCACTATAACCACGCCA
ACL1 TCTAGGGGCATCGACCTGAA GCATGACGTAGATGAAGCAGCGA
ROC5 AGGTGGAAATGTGAAGTGTAGG AGGCGAGACCAGACCGAAG
RL14 CTATCCACCGTGCTTGAA AGAACCATTTGCCATCCT
REL2 CTTGCTATCGTCGCTGTCGT GCTCTTCCCTTCCATTGACT
NAL7 CAGGAGGACGGTGAGTTGTTC GCAGTAGAGCCCGTTTGGAC
SLL1 CGGCGACATGGACCAGTCGT GCTCGATCTGCACGGTTCCAA
AVB CACAGTCTTCTCCGGGCAGCAA CATTACCACCACCTAAGCCAGCTCT

图1

野生型(WT)和突变体(acl3)的表型鉴定 A~C: 三叶一心期、拔节期和成熟期野生型(WT)和突变体acl3的植株表型; A中标尺为5 cm, B和C中标尺为10 cm。D: 成熟期野生型和突变体acl3倒一叶表型, 标尺为1 cm。E: 成熟期野生型和突变体acl3叶片卷曲指数(LRI)。F: 成熟期野生型和突变体acl3的穗及节间表型, 左边为野生型, 右边为突变体acl3, 标尺为5 cm。G: 成熟期野生型和突变体acl3的穗及节间统计。*、**分别表示在0.05、0.01水平差异显著。"

图2

野生型(WT)和突变体(acl3)产量性状统计分析 A: 野生型和突变体acl3的穗, 红色箭头指的为未结实的空壳, 标尺为3.5 cm; B: 野生型和突变体acl3的一次枝梗和二次枝梗数量统计; C: 野生型和突变体acl3的花结构, ①和②为相应的花粉粒KI-I2染色, 标尺为2 mm; D: 野生型和突变体acl3的籽粒, 标尺为6 mm; E: 野生型和突变体acl3的结实率统计; F: 野生型和突变体acl3的千粒重统计; G: 野生型和突变体acl3的籽粒长度统计; H: 野生型和突变体acl3的籽粒宽度统计; I: 野生型和突变体acl3的籽粒厚度统计; J: 野生型和突变体acl3的有效穗数量统计。**表示在0.01水平差异显著。"

表2

野生型与突变体acl3的主要农艺性状比较"

性状Trait 野生型Wild type 突变体Mutant
株高 Plant height (cm) 89.00±1.41 71.00±1.22**
穗长 Panicle length (cm) 25.80±0.45 24.00±1.00*
有效穗数 Panicles per plant 5.80±0.84 6.80±0.45
结实率 Seed-setting rate (%) 92.71±2.40 40.33±7.11**
粒长 Grain length (mm) 9.10±0.10 8.78±0.08**
粒宽 Grain width (mm) 2.76±0.05 2.82±0.04
粒厚 Grain thickness (mm) 1.92±0.04 2.13±0.04**
千粒重 1000-grain weight (g) 23.25±0.28 3.13±0.62**

图3

野生型(WT)和突变体(acl3)叶片细胞学观察和光合效率测定 A和B: 抽穗期野生型和突变体acl3倒一叶横切面石蜡切片, 标尺为500 μm; a和b: A和B图中红色线框的放大图, 标尺为100 μm; C: 两小维管束之间的泡状细胞数量统计; D: 泡状细胞面积统计; E: 净光合速率统计; F: 气孔导度统计; G: 蒸腾速率统计; H: 胞间二氧化碳浓度统计。BC: 泡状细胞。*、**分别表示在0.05、0.01水平差异显著。"

表3

卷叶突变体acl3的遗传分析"

组合名称
Combination
F2群体株数
Total number
野生型株数
Wild type number
突变株数
Mutant number
理论值
Theory value
χ2 0.05=3.84
acl3/缙恢10 acl3/Jinhui 10 636 463 173 3:1 1.64

图4

ACL3基因的图位克隆 A: ACL3基因的分子定位; B: 定位区间差异位点的IGV图谱, 红色箭头表示碱基差异位点; C: 野生型WT和突变体acl3突变位点的测序验证, 红色方框表示突变碱基; D: 候选基因的结构图, 白色方块表示5′UTR, 黑色方块表示外显子, 白色箭头表示3′UTR, 黑实线表示内含子, 红色折线表示突变位点; E: WT、acl3和互补转基因植株(COM)表型, 标尺为20 cm; F: WT、acl3和COM剑叶叶片表型, 标尺为1 cm。"

图5

ACL3蛋白结构及生物信息学分析 A: 野生型和突变体acl3中的ACL3蛋白结构, 箭头所指为变异区; B: ACL3系统进化树分析; C: ACL3保守结构域(红色方框)和氨基酸突变位点(红色星号)。"

图6

卷叶及IAA相关基因的qRT-PCR分析 A: 卷叶相关基因的qRT-PCR分析; B: 生长素途径相关基因的qRT-PCR分析。*、**分别表示在0.05、0.01水平差异显著。"

[1] 朱德峰, 林贤青, 曹卫星. 不同叶片卷曲度杂交水稻的光合特性比较. 作物学报, 2001, 27: 329-333.
Zhu D F, Lin X Q, Cao W X. Comparison of leaf photosynthetic characteristics among rice hybrids with different leaf rolling index. Acta Agron Sin, 2001, 27: 329-333 (in Chinese with English abstract).
[2] 田晓庆, 桑贤春, 赵芳明, 李云峰, 凌英华, 杨正林, 何光华. 水稻卷叶基因RL13的遗传分析和分子定位. 作物学报, 2012, 38: 423-428.
doi: 10.3724/SP.J.1006.2012.00423
Tian X Q, Sang X C, Zhao F M, Li Y F, Ling Y H, Yang Z L, He G H. Genetic analysis and molecular mapping of a rolled leaf gene RL13 in rice (Oryza sativa L.). Acta Agron Sin, 2012, 38: 423-428 (in Chinese with English abstract).
[3] 周文期, 强晓霞, 李思雨, 王森, 卫万荣. 水稻卷叶等位突变体e202的鉴定和基因精细定位. 作物学报, 2023, 49: 3029-3041.
doi: 10.3724/SP.J.1006.2023.22061
Zhou W Q, Qiang X X, Li S Y, Wang S, Wei W R. Identification of a rolling leaf allelic mutant e202 and fine mapping of E202 gene in rice. Acta Agron Sin, 2023, 49: 3029-3041 (in Chinese with English abstract).
[4] 周亭亭, 饶玉春, 任德勇. 水稻卷叶细胞学与分子机制研究进展. 植物学报, 2018, 53: 848-855.
doi: 10.11983/CBB17236
Zhou T T, Rao Y C, Ren D Y. Research advances in the cytological and molecular mechanisms of leaf rolling in rice. Chin Bull Bot, 2018, 53: 848-855 (in Chinese with English abstract).
[5] Xu Y, Wang Y H, Long Q Z, Huang J X, Wang Y L, Zhou K N, Zheng M, Sun J, Chen H, Chen S H, et al. Overexpression of OsZHD1, a zinc finger homeodomain class homeobox transcription factor, induces abaxially curled and drooping leaf in rice. Planta, 2014, 239: 803-816.
[6] Li L, Shi Z Y, Li L, Shen G Z, Wang X Q, An L S, Zhang J L. Overexpression of ACL1 (abaxially curled leaf 1) increased bulliform cells and induced abaxial curling of leaf blades in rice. Mol Plant, 2010, 3: 807-817.
[7] Xu Y, Kong W Y, Wang F Q, Wang J, Tao Y J, Li W Q, Chen Z H, Fan F J, Jiang Y J, Zhu Q H, et al. Heterodimer formed by ROC8 and ROC5 modulates leaf rolling in rice. Plant Biotechnol J, 2021, 19: 2662-2672.
doi: 10.1111/pbi.13690 pmid: 34448351
[8] Sun J, Cui X A, Teng S Z, Zhao K N, Wang Y W, Chen Z H, Sun X H, Wu J X, Ai P F, Quick W P, et al. HD-ZIP IV gene Roc8 regulates the size of bulliform cells and lignin content in rice. Plant Biotechnol J, 2020, 18: 2559-2572.
[9] Fang J J, Guo T T, Xie Z W, Chun Y, Zhao J F, Peng L X, Zafar S A, Yuan S J, Xiao L T, Li X Y. The URL1-ROC5-TPL2 transcriptional repressor complex represses the ACL1 gene to modulate leaf rolling in rice. Plant Physiol, 2021, 185: 1722-1744.
[10] Zou L P, Sun X H, Zhang Z G, Liu P, Wu J X, Tian C J, Qiu J L, Lu T G. Leaf rolling controlled by the homeodomain leucine zipper class IV gene Roc5 in rice. Plant Physiol, 2011, 156: 1589-1602.
[11] Zhang X B, Wang Y, Zhu X Y, Wang X W, Zhu Z, Li Y Y, Xie J, Xiong Y Z, Yang Z L, He G H, et al. Curled flag leaf 2, encoding a cytochrome P450 protein, regulated by the transcription factor Roc5, influences flag leaf development in rice. Front Plant Sci, 2021, 11: 616977.
[12] Zhou L, Chen S H, Cai M H, Cui S, Ren Y L, Zhang X Y, Liu T Z, Zhou C L, Jin X, Zhang L M, et al. ESCRT-III component OsSNF7.2 modulates leaf rolling by trafficking and endosomal degradation of auxin biosynthetic enzyme OsYUC8 in rice. J Integr Plant Biol, 2023, 65: 1408-1422.
doi: 10.1111/jipb.13460
[13] Wang J J, Xu J, Wang L, Zhou M Y, Nian J Q, Chen M M, Lu X L, Liu X, Wang Z A, Cen J S, et al. SEMI-ROLLED LEAF 10 stabilizes catalase isozyme B to regulate leaf morphology and thermotolerance in rice (Oryza sativa L.). Plant Biotechnol J, 2023, 21: 819-838.
[14] 沈年伟, 钱前, 张光恒. 水稻卷叶性状的研究进展及在育种中的应用. 分子植物育种, 2009, 7: 852-860.
Shen N W, Qian Q, Zhang G H. Research progress on rice rolled leaf and its application in breeding program. Mol Plant Breed, 2009, 7: 852-860 (in Chinese with English abstract).
[15] Zhang G H, Xu Q, Zhu X D, Qian Q, Xue H W. SHALLOT- LIKE1 is a KANADI transcription factor that modulates rice leaf rolling by regulating leaf abaxial cell development. Plant Cell, 2009, 21: 719-735.
[16] Liu X F, Li M, Liu K, Tang D, Sun M F, Li Y F, Shen Y, Du G J, Cheng Z K. Semi-Rolled Leaf 2 modulates rice leaf rolling by regulating abaxial side cell differentiation. J Exp Bot, 2016, 67: 2139-2150.
[17] Wu R H, Li S B, He S, Wassmann F, Yu C H, Qin G J, Schreiber L, Qu L J, Gu H Y.CFL1, a WW domain protein, regulates cuticle development by modulating the function of HDG1, a class IV homeodomain transcription factor, in rice and Arabidopsis. Plant Cell, 2011, 23: 3392-3411.
[18] Fang L K, Zhao F M, Cong Y F, Sang X C, Du Q, Wang D Z, Li Y F, Ling Y H, Yang Z L, He G H. Rolling-leaf14 is a 2OG-Fe (II) oxygenase family protein that modulates rice leaf rolling by affecting secondary cell wall formation in leaves. Plant Biotechnol J, 2012, 10: 524-532.
doi: 10.1111/j.1467-7652.2012.00679.x pmid: 22329407
[19] Wang L, Xu J, Nian J Q, Shen N W, Lai K K, Hu J, Zeng D L, Ge C W, Fang Y X, Zhu L, et al. Characterization and fine mapping of the rice gene OsARVL4 regulating leaf morphology and leaf vein development. Plant Growth Regul, 2016, 78: 345-356.
[20] Li Y Y, He P L, Wang X W, Chen H Y, Ni J L, Tian W J, Zhang X B, Cui Z B, He G H, Sang X C. FGW1, a protein containing DUF630 and DUF632 domains, regulates grain size and filling in Oryza sativa L. Crop J, 2023, 11: 1390-1400.
[21] Yang S Q, Li W Q, Miao H, Gan P F, Qiao L, Chang Y L, Shi C H, Chen K M. REL2, a gene encoding an unknown function protein which contains DUF630 and DUF632 domains controls leaf rolling in rice. Rice, 2016, 9: 37.
[22] Wen X X, Sun L P, Chen Y Y, Xue P, Yang Q Q, Wang B F, Yu N, Cao Y R, Zhang Y, Gong K, et al. Rice dwarf and low tillering 10 (OsDLT10) regulates tiller number by monitoring auxin homeostasis. Plant Sci, 2020, 297: 110502.
[23] Tobeña-Santamaria R, Bliek M, Ljung K, Sandberg G, Mol J N M, Souer E, Koes R. FLOOZY of Petunia is a flavin mono- oxygenase-like protein required for the specification of leaf and flower architecture. Genes Dev, 2002, 16: 753-763.
[24] Zhao Y, Christensen S K, Fankhauser C, Cashman J R, Cohen J D, Weigel D, Chory J. A role for flavin monooxygenase-like enzymes in auxin biosynthesis. Science, 2001, 291: 306-309.
doi: 10.1126/science.291.5502.306 pmid: 11209081
[25] Fujino K, Matsuda Y, Ozawa K, Nishimura T, Koshiba T, Fraaije M W, Sekiguchi H. NARROW LEAF 7 controls leaf shape mediated by auxin in rice. Mol Genet Genomics, 2008, 279: 499-507.
doi: 10.1007/s00438-008-0328-3 pmid: 18293011
[26] Woo Y M, Park H J, Su’udi M, Yang J I, Park J J, Back K, Park Y M, An G. Constitutively wilted 1, a member of the rice YUCCA gene family, is required for maintaining water homeostasis and an appropriate root to shoot ratio. Plant Mol Biol, 2007, 65: 125-136.
[27] Huang J, Li Z Y, Zhao D Z. Deregulation of the OsmiR160 target gene OsARF18 causes growth and developmental defects with an alteration of auxin signaling in rice. Sci Rep, 2016, 6: 29938.
doi: 10.1038/srep29938 pmid: 27444058
[28] 杨璇, 胡骏. 杂交水稻育种技术的研究进展. 武汉大学学报(理学版), 2024, 70: 556-566.
Yang X, Hu J. Progress in hybrid rice breeding technology. J Wuhan Univ (Nat Sci Edn), 2024, 70: 556-566 (in Chinese with English abstract).
[29] 梁容, 秦冉, 曾冬冬, 郑希, 金晓丽, 石春海. 水稻窄卷叶突变体nrl4的表型分析与基因定位. 中国农业科学, 2016, 49: 3863-3873.
doi: 10.3864/j.issn.0578-1752.2016.20.001
Liang R, Qin R, Zeng D D, Zheng X, Jin X L, Shi C H. Phenotype analysis and gene mapping of narrow and rolling leaf mutant nrl4 in rice (Oryza sativa L.). Sci Agric Sin, 2016, 49: 3863-3873 (in Chinese with English abstract).
[30] Ma L, Sang X C, Zhang T, Yu Z Y, Li Y F, Zhao F M, Wang Z W, Wang Y T, Yu P, Wang N, et al. ABNORMAL VASCULAR BUNDLES regulates cell proliferation and procambium cell establishment during aerial organ development in rice. New Phytol, 2017, 213: 275-286.
[31] 贾璐绮, 孙悠, 田然, 张学菲, 代永东, 崔志波, 李杨羊, 冯新宇, 桑贤春, 王晓雯. 水稻种子快速萌发突变体rgs1的鉴定及调控基因克隆. 作物学报, 2023, 49: 2288-2295.
doi: 10.3724/SP.J.1006.2023.22056
Jia L Q, Sun Y, Tian R, Zhang X F, Dai Y D, Cui Z B, Li Y Y, Feng X Y, Sang X C, Wang X W. Identification of the rgs1mutant with rapid germination of seed and isolation of the regulated gene in rice. Acta Agron Sin, 2023, 49: 2288-2295 (in Chinese with English abstract).
[32] Zhuang H, Wang H L, Zhang T, Zeng X Q, Chen H, Wang Z W, Zhang J, Zheng H, Tang J, Ling Y H, et al. NONSTOP GLUMES1 encodes a C2H2 zinc finger protein that regulates spikelet development in rice. Plant Cell, 2020, 32: 392-413.
[33] Richards R A, Rebetzke G J, Condon A G, van Herwaarden A F. Breeding opportunities for increasing the efficiency of water use and crop yield in temperate cereals. Crop Sci, 2002, 42: 111-121.
doi: 10.2135/cropsci2002.1110 pmid: 11756261
[34] 胡忠孝, 田妍, 徐秋生. 中国杂交水稻推广历程及现状分析. 杂交水稻, 2016, 31(2): 1-8.
Hu Z X, Tian Y, Xu Q S. Review of extension and analysis on current status of hybrid rice in China. Hybrid Rice, 2016, 31(2): 1-8 (in Chinese with English abstract).
[35] Mori M, Nomura T, Ooka H, Ishizaka M, Yokota T, Sugimoto K, Okabe K, Kajiwara H, Satoh K, Yamamoto K, et al. Isolation and characterization of a rice dwarf mutant with a defect in brassinosteroid biosynthesis. Plant Physiol, 2002, 130: 1152-1161.
doi: 10.1104/pp.007179 pmid: 12427982
[36] 夏玉梅, 唐宁, 詹祎捷, 卜小兰, 胡远艺, 余木兰, 淡俊豪, 曹孟良. 杂交水稻混播机械化制种技术研究进展. 杂交水稻, 2020, 35(2): 1-5.
Xia Y M, Tang N, Zhan Y J, Bu X L, Hu Y Y, Yu M L, Dan J H, Cao M L. Research progress of mechanized mixed-sowing hybrid rice seed production technology. Hybrid Rice, 2020, 35(2): 1-5 (in Chinese with English abstract).
[37] 郎有忠, 张祖建, 顾兴友, 杨建昌, 朱庆森. 水稻卷叶性状生理生态效应的研究II. 光合特性、物质生产与产量形成. 作物学报, 2004, 30: 883-887.
Lang Y Z, Zhang Z J, Gu X Y, Yang J C, Zhu Q S. Physiological and ecological effects of crimpy leaf character in rice (Oryza sativa L.) II. Photosynthetic character, dry mass production and yield forming. Acta Agron Sin, 2004, 30: 883-887 (in Chinese with English abstract).
[38] Yu Q, Chen L, Zhou W Q, An Y H, Luo T X, Wu Z L, Wang Y Q, Xi Y F, Yan L F, Hou S W. RSD1 is essential for stomatal patterning and files in rice. Front Plant Sci, 2020, 11: 600021.
[39] Attia K A, Abdelkhalik A F, Ammar M H, Wei C, Yang J S, Lightfoot D A, El-Sayed W M, El-Shemy H A. Antisense phenotypes reveal a functional expression of OsARF1, an auxin response factor, in transgenic rice. Curr Issues Mol Biol, 2009, 11: i29-i34.
[40] Song S Y, Chen Y, Liu L, See Y H B, Mao C Z, Gan Y B, Yu H. OsFTIP7 determines auxin-mediated anther dehiscence in rice. Nat Plants, 2018, 4: 495-504.
doi: 10.1038/s41477-018-0175-0 pmid: 29915329
[41] He Y B, Yan L, Ge C N, Yao X F, Han X, Wang R C, Xiong L Z, Jiang L W, Liu C M, Zhao Y D. PINOID is required for formation of the stigma and style in rice. Plant Physiol, 2019, 180: 926-936.
doi: 10.1104/pp.18.01389 pmid: 30918083
[42] Kanno T, Kasai K, Ikejiri-Kanno Y, Wakasa K, Tozawa Y.In vitro reconstitution of rice anthranilate synthase: distinct functional properties of the alpha subunits OASA1 and OASA2. Plant Mol Biol, 2004, 54: 11-22.
[43] Zhao Z G, Wang C L, Yu X W, Tian Y L, Wang W X, Zhang Y H, Bai W T, Yang N, Zhang T, Zheng H, et al. Auxin regulates source-sink carbohydrate partitioning and reproductive organ development in rice. Proc Natl Acad Sci USA, 2022, 119: e2121671119.
[44] Xiang J J, Zhang G H, Qian Q, Xue H W. Semi-rolled leaf 1 encodes a putative glycosylphosphatidylinositol-anchored protein and modulates rice leaf rolling by regulating the formation of bulliform cells. Plant Physiol, 2012, 159: 1488-1500.
[45] Li W Q, Zhang M J, Gan P F, Qiao L, Yang S Q, Miao H, Wang G F, Zhang M M, Liu W T, Li H F, et al. CLD1/SRL1 modulates leaf rolling by affecting cell wall formation, epidermis integrity and water homeostasis in rice. Plant J, 2017, 92: 904-923.
[46] 王翠红, 马建, 王帅, 田鹏, 岂长燕, 赵志超, 王久林, 王洁, 程治军, 张欣, 等. 一个新的水稻D1基因等位突变体的遗传鉴定与基因功能分析. 作物学报, 2016, 42: 1261-1272.
doi: 10.3724/SP.J.1006.2016.01261
Wang C H, Ma J, Wang S, Tian P, Qi C Y, Zhao Z C, Wang J L, Wang J, Cheng Z J, Zhang X, et al. Genetic identification of a new D1-allelic mutant and analysis of its gene function in rice. Acta Agron Sin, 2016, 42: 1261-1272 (in Chinese with English abstract).
[1] 张琴, 戴成, 马朝芝. 生长素响应报告基因转化甘蓝型油菜及各组织GUS动态信号分析[J]. 作物学报, 2025, 51(3): 667-675.
[2] 万应春, 班义结, 蒋钰东, 王亚欣, 刘晶晶, 刘晓晴, 程育林, 王楠, 冯萍. 水稻雄性不育突变体tpa1的表型鉴定与精细定位[J]. 作物学报, 2024, 50(5): 1104-1114.
[3] 谭丹, 陈家婷, 郜钰, 张晓军, 李欣, 闫贵云, 李锐, 陈芳, 常利芳, 张树伟, 郭慧娟, 畅志坚, 乔麟轶. 小麦穗型相关生长素通路基因发掘及TaARF23-A与小穗数关联分析[J]. 作物学报, 2024, 50(2): 506-513.
[4] 付佳祺, 李世宽, 谭萌慧, 罗方, 张传玲, 刘祾悦, 卢倩, 谷勇哲. 大豆GmRSM1通过调节PIN基因表达促进顶端弯钩消失[J]. 作物学报, 2024, 50(11): 2731-2741.
[5] 丁杰荣, 马雅美, 潘发枝, 江立群, 黄文洁, 孙炳蕊, 张静, 吕树伟, 毛兴学, 于航, 李晨, 刘清. 泛素受体蛋白OsDSK2b负向调控水稻叶瘟和渗透胁迫抗性[J]. 作物学报, 2023, 49(6): 1466-1479.
[6] 何永明, 张芳. 生长素调控水稻颖花开放的效应研究[J]. 作物学报, 2023, 49(6): 1690-1698.
[7] 李邦, 刘春娟, 郭俊杰, 武宇昕, 邓志成, 张敏, 崔彤, 刘畅, 周宇飞. 低氮胁迫下外源色氨酸对高粱幼苗根系伸长的调控作用[J]. 作物学报, 2023, 49(5): 1372-1385.
[8] 刘叶, 李越, 苑名杨, 卫乃翠, 关攀锋, 赵佳佳, 武棒棒, 郑兴卫, 郝宇琼, 乔玲, 郑军. 小麦卷叶突变体RL1的生理特性及遗传研究[J]. 作物学报, 2023, 49(12): 3399-3410.
[9] 崔芳芳, 孟林峰, 刘苗苗, 张建强, 王建革, 刘齐元. 烟草细胞质雄性不育系K326 MADS-boxSUPERMAN基因的特征[J]. 作物学报, 2023, 49(12): 3204-3214.
[10] 周文期, 强晓霞, 李思雨, 王森, 卫万荣. 水稻卷叶等位突变体e202的鉴定和基因精细定位[J]. 作物学报, 2023, 49(11): 3029-3041.
[11] 梁政, 柯美玉, 陈志威, 陈栩, 高震. 大豆GmPIN2家族基因调控根系发育功能初探[J]. 作物学报, 2023, 49(1): 24-35.
[12] 委刚, 陈单阳, 任德勇, 杨宏霞, 伍靖雯, 冯萍, 王楠. 水稻细长秆突变体sr10的鉴定与基因定位[J]. 作物学报, 2022, 48(8): 2125-2133.
[13] 曾维英, 赖振光, 孙祖东, 杨守臻, 陈怀珠, 唐向民. 基于BSA-Seq和RNA-Seq方法鉴定大豆抗豆卷叶螟候选基因[J]. 作物学报, 2021, 47(8): 1460-1471.
[14] 陈淼, 谢赛, 王超智, 李焱龙, 张献龙, 闵玲. 棉花GhPIF4调控高温下花药败育机制初探[J]. 作物学报, 2020, 46(9): 1368-1379.
[15] 谢园华,李凤菲,马晓慧,谭佳,夏赛赛,桑贤春,杨正林,凌英华. 水稻半外卷叶突变体sol1的表型分析与基因定位[J]. 作物学报, 2020, 46(02): 204-213.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!