欢迎访问作物学报,今天是

作物学报 ›› 2025, Vol. 51 ›› Issue (6): 1445-1466.doi: 10.3724/SP.J.1006.2025.44108

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

棉花纤维品质相关性状QTL元分析及候选基因鉴定

郭栋财(), 吕涛(), 蔡永生, 买吾鲁达·艾合买提, 全家, 曲延英(), 郑凯()   

  1. 新疆农业大学/新疆作物生物育种重点实验室, 新疆乌鲁木齐 830052
  • 收稿日期:2024-07-05 接受日期:2025-01-23 出版日期:2025-06-12 网络出版日期:2025-02-11
  • 通讯作者: *郑凯, E-mail: zhengkai555@126.com;曲延英, E-mail: xjyyq5322@126.com
  • 作者简介:郭栋财, E-mail: 1907821666@qq.com;
    吕涛, E-mail: 943308727@qq.com第一联系人:**同等贡献
  • 基金资助:
    本研究由国家自然科学基金青年基金项目(32301867);新疆维吾尔自治区重点研发项目(2022B02009-1);“天山英才”培养计划项目(2023TSYCLJ0012);新疆农业大学作物学重点学科发展基金项目(XNCDKY2021016)

Meta-analysis of QTL and identification of candidate genes for fiber quality in cotton

GUO Dong-Cai(), LYU Tao(), CAI Yong-Sheng, MAI WU-LU-DA·AI He-Mai-Ti, CHEN Quan-Jia, QU Yan-Ying(), ZHENG Kai()   

  1. Xinjiang Agricultural University / Laboratory of Crop Genetic Improvement and Germplasm Innovation, Urumqi 830052, Xinjiang, China
  • Received:2024-07-05 Accepted:2025-01-23 Published:2025-06-12 Published online:2025-02-11
  • Contact: *E-mail: zhengkai555@126.com;E-mail: xjyyq5322@126.com
  • About author:First author contact:**Contributed equally to this work
  • Supported by:
    the National Natural Science Foundation of China Young Scientists Fund(32301867);the Key Research and Development Project of the Xinjiang Uygur Autonomous Region(2022B02009-1);the “Tianshan Talent” Training Program(2023TSYCLJ0012);the Key Discipline Development Fund for Crop Science of Xinjiang Agricultural University(XNCDKY2021016)

摘要:

棉花纤维品质性状是受多基因控制的复杂数量性状, 深入挖掘棉花纤维品质数量性状基因座(quantitative trait loci, QTL)和候选基因对棉花纤维品质遗传改良具有重要意义。本研究利用BioMercator 4.2软件, 以Blenda A等发布的棉花高密度分子标记遗传连锁图谱为参考图谱, 对来自21个独立纤维品质QTL定位研究中的379个控制棉花纤维品质的原始QTL进行图谱整合、映射以及QTL元分析。获得的74个控制棉花纤维品质性状的一致性meta-QTL (meta quantitative trait loci, MQTL), 分布在26条染色体上, 置信区间最小为0.5 cM, 所有MQTL中共包含13,833个基因。通过RNA-seq、GO和KEGG富集分析, 挖掘到32个与棉花纤维品质相关的候选基因。通过qRT-PCR验证发现, 这些基因在棉花纤维发育不同时期差异表达, 推测其可能参与调控棉花纤维发育。本研究为棉花纤维品质性状分子标记辅助选择育种和基因克隆提供理论依据。

关键词: 棉花, 纤维品质, 一致性QTL, 元分析

Abstract:

Cotton fiber quality is a complex quantitative trait controlled by multiple genes. Identifying true quantitative trait loci (QTL) and candidate genes associated with fiber quality is critical for the genetic improvement of cotton. In this study, QTL meta-analysis was performed using BioMercator 4.2 software, with a high-density molecular marker genetic linkage map published by Blenda A et al. as the reference. A total of 379 original QTLs related to cotton fiber quality, derived from 21 independent QTL mapping studies, were integrated, mapped, and analyzed. This analysis identified 74 meta-QTLs (MQTLs) associated with cotton fiber quality traits, distributed across 26 chromosomes, with the minimum confidence interval of 0.5 cM. These MQTLs collectively encompassed 13,833 genes. Through RNA-seq analysis combined with GO and KEGG enrichment analysis, 32 candidate genes related to cotton fiber quality were identified. qRT-PCR validation revealed that these genes exhibited differential expression during various stages of fiber development, suggesting their potential roles in regulating fiber growth and quality. This study provides a theoretical basis for molecular marker-assisted breeding and gene cloning for cotton fiber quality.

Key words: cotton, fiber quality, consistency QTL, meta-analysis

表1

棉花纤维品质相关性状QTL的文献信息"

亲本组合
Parental combination
群体大小
Population size
群体类型
Population type
QTL数目
QTL number
LOD值
LOD score
贡献率
R2 (%)
参考文献
Reference
901-001 × SGK156 250 F2/F2:3/F2:4/F2:5 11 2.80-6.10 1.08-25.41 [24]
MBI7455 × MBI7358 491 F2 10 2.35-4.30 2.52-7.89 [25]
中棉所36 × 海1
CCRI 36 × Hai 1
408 BC5F3/BC5F3:4/BC5F3:5 21 2.58-10.80 2.60-11.45 [26]
苏优6167 × 苏棉22号
Suyou 6167 × Sumian 22
348 F2/F2:3 11 3.72-31.26 6.76-33.28 [27]
鲁棉研37 × Sealand
LMY 37 × Sealand
365 F2/F2:3 5 3.81-8.14 3.98-8.09 [28]
中棉所36 × 海1
CCRI 36 × Hai 1
135 BC1F1/BC2F1/BC1S1 21 2.51-4.67 6.62-14.19 [29]
GX1135 × GX100-2 173 F2/F2:3/F2:4 13 2.19-7.46 7.70-14.77 [30]
中棉所36 × 海1
CCRI 36×Hai 1
133 BC5F1/BC5F2 18 2.58-4.57 6.97-12.93 [31]
中棉所8 × Pima 90-53
CCRI 8 × Pima 90-53
182 BC3F5 25 3.05-6.07 1.27-12.45 [32]
中棉所35 × 渝棉1号
CCRI 35 × Yumian 1
180 RIL 48 2.02-3.68 5.00-9.00 [33]
中棉所12 × 中棉所28, 中棉所12 × 湘杂棉2号
CCRI 12 × CCRI 28,
CCRI 12 × Xiangzamian 2
262, 260 F2/F2:3 13 2.09-16.05 3.97-25.89 [34]
0-153 × sGK9708 250, 196 F2/F2:3, RIL 24 2.64-13.49 4.60-27.86 [35]
LY343 × LMY22 209 F2/F2:3 11 3.95-14.64 5.29-20.66 [36]
TM-1 × 渝棉1号
TM-1×Yumian 1
228 F2/F3 4 2.58-6.53 5.32-19.17 [37]
1138 × NM03102 195 F2/F2:3 7 2.73-4.65 6.43-12.64 [38]
中棉所36 × MBI9626
CCRI 36 × MBI9626
152 BC6F2/BC6F2:3/BC6F2:4 7 2.73-3.74 3.67-9.83 [39]
5026 × 李台8号
5026 × Li 8
169 RIL 3 3.02-3.23 6.70-6.80 [40]
中棉所45 × 海1
CCRI 45 × Hai 1
116 BC4F1 20 2.54-5.24 7.57-38.39 [41]
鲁棉研22 × R497, 鲁棉研22 × R472
LMY 22 × R497, LMY 22 × R472
544, 541 F2/F2:3 9 3.44-8.15 2.84-9.06 [42]
中棉所36 × Hai7124
CCRI 36 × Hai7124
186 F2/F2:3 91 2.50-9.50 2.67-51.30 [43]
中棉所8号 × 海岛棉Pima 90-53
CCRI 8 × Haidaomian Pima 90-53
131 BC1F2/BC1F2:3/BC1F2:4 7 2.54-5.64 11.99-42.79 [44]

图1

棉花纤维品质相关性状QTL一致性图谱 染色体左侧“点”至“横线”表示QTL所在位点的遗传贡献率大小的连续变化。“竖线”表示QTL置信区间。"

表2

棉花纤维品质相关性状QTL元分析结果"

编号
Number
染色体
Chr.
原始性状
Original trait
QTL
数目
QTL number
位置
Position (cM)
置信区间
Confidence
interval (cM)
侧翼标记
Flanking marker
MQTL的物理距离
Physical length of
MQTL (Mb)
MQTL1 A01 FL, FS 3 26.63 13.12-40.14 NAU3254-NAU2741 108.53-113.32
MQTL2 A01 FL, FS, FM 5 42.57 39.27-45.87 NAU2095-NAU5163 108.21-111.37
MQTL3 A01 FL, FS, FM 5 46.03 43.94-48.12 NAU2741-NAU3433 105.90-108.53
MQTL4 A01 FL, FS 3 55.88 53.91-57.85 NAU3433-BNL3886 60.38-105.90
MQTL5 A01 FS, FU 2 66.00 57.87-74.13 BNL3886-TMB0062 17.45-60.32
MQTL6 A02 FL, FU 4 37.82 37.68-37.96 HAU2690-HAU1155 96.37-97.39
MQTL7 A03 FL, FM 2 12.40 0.00-28.42 NAU5289-HAU2127 102.24-103.78
MQTL8 A03 FL, FS, FM, FU, FE 13 52.10 49.97-54.23 CIR245-NAU1248 93.53-97.33
MQTL9 A03 FL, FS, FM, FU, FE 13 56.43 52.47-60.39 NAU1068-BNL4034 89.61-95.44
MQTL10 A03 FL, FS, FM, FU, FE 16 61.25 58.02-64.48 BNL4034-Gh129 85.30-89.61
MQTL11 A03 FL, FS, FM, FU, FE 14 77.28 69.66-84.90 BNL3398-TMB1898 142.58-74.88
MQTL12 A04 FL, FM, FU, FE 5 40.96 40.32-41.60 MUSS396-Gh124 11.64-20.54
MQTL13 A05 FS, FU 2 11.98 1.08-22.88 MUSS219-Gh260 96.96-101.83
MQTL14 A05 FS, FM, FU, FE 5 30.83 27.51-34.15 CIR185-JESPR065 92.00-95.32
MQTL15 A05 FS, FM, FE 5 36.43 29.16-43.70 JESPR065-TMB1314 87.66-92.00
MQTL16 A05 FL, FS, FM, FU, FE 17 73.93 72.8-75.06 JESPR241-BNL0542 28.38-30.52
MQTL17 A06 FL, FM, FU 4 73.84 66.9-80.78 Gh185-TMB2504 105.25-112.36
MQTL18 A06 FL, FM, FU 4 87.65 78.64-96.66 BNL2691-JESPR163 53.58-108.95
MQTL19 A07 FL, FS, FM, FU, FE 17 53.16 48.63-57.69 NAU5439-DPL0852 85.35-88.45
MQTL20 A07 FL, FS, FM, FU 7 76.17 73.13-79.21 HAU1780-NAU1362 21.54-29.31
MQTL21 A08 FL, FS, FM 3 45.47 31.85-59.09 NAU1017-BNL3556 112.23-116.31
MQTL22 A09 FL, FM, FE 4 14.23 6.35-22.11 BNL1707-CIR079 5.76-10.40
MQTL23 A09 FM, FU, FE 5 31.15 24.12-38.18 BNL0686-DPL0618 1.17-9.41
MQTL24 A09 FM, FU, FE 6 37.44 34.97-39.91 NAU3101-DPL0854 7.55-10.79
MQTL25 A09 FL, FM, FU, FE 6 44.40 42.44-46.36 NAU4021-NAU2832 42.52-50.44
MQTL26 A09 FL, FS, FM, FU, FE 8 49.12 45.49-52.75 NAU2832-TMB2920 50.44-51.32
MQTL27 A09 FS, FM, FU, FE 7 65.03 43.96-86.10 MUSS432-MUCS426 45.76-68.19
MQTL28 A10 FS, FM, FE 5 39.45 32.53-46.37 CIR305-NAU2991 103.64-105.66
MQTL29 A10 FS, FU, FE 3 56.00 54.69-57.31 NAU4008-BNL2960 99.86-100.53
MQTL30 A11 FL, FS, FE 8 34.25 11.78-56.72 MUSS123-NAU3695 1.19-7.83
MQTL31 A11 FL, FS, FM, FE 9 100.83 94.53-107.13 NAU3657-NAU2651 17.43-18.19
MQTL32 A12 FS 2 9.22 5.26-13.18 DPL0469-HAU2486 0.94-1.70
MQTL33 A12 FL, FU, FE 4 38.69 33.36-44.02 BNL3261-CIR167 6.67-8.01
MQTL34 A12 FL, FS, FE 9 50.09 47.84-52.34 DPL0742-HAU1434 75.56-77.44
MQTL35 A12 FL, FS, FU, FE 6 57.52 56.15-58.89 BNL0391-NAU5419 79.41-85.05
MQTL36 A13 FS, FM, FE 4 44.11 41.37-46.85 MUCS404-BNL1495 5.29-6.22
MQTL37 A13 FM, FE 3 54.68 53.05-56.31 DPL0763-CIR096 10.47-14.62
MQTL38 D02 FL, FS, FM, FU, FE 25 18.73 14.78-22.68 NAU2960-CIR084 65.89-66.71
MQTL39 D02 FL, FS, FM, FU, FE 26 39.24 36.94-41.54 NAU5465-NAU4022 62.96-64.01
MQTL40 D02 FL, FS, FM, FU, FE 20 75.51 71.88-79.14 Gh067-MUCS105 26.35-28.22
MQTL41 D01 FL, FM, FU, FE 11 47.55 43.29-51.81 NAU2343-NAU2823 57.98-60.89
MQTL42 D01 FL, FS, FE 8 90.84 89.88-91.80 BNL4095-HAU1427 14.62-14.66
MQTL43 D07 FL, FS, FM, FU, FE 13 35.38 32.09-38.67 NAU3608-HAU1555 48.18-54.56
MQTL44 D07 FL, FS, FM, FU, FE 13 55.73 54.47-56.99 JESPR228-NAU5061 21.37-24.66
MQTL45 D03 FL, FM, FU 10 45.03 39.74-50.32 HAU0880-NAU3805 3.24-4.20
MQTL46 D03 FL, FM, FU, FE 15 50.31 49.07-51.55 BNL2706-BNL3590 28.73-31.95
MQTL47 D03 FL, FM, FU, FE 9 65.82 55.65-75.99 BNL3590-BNL3371 31.96-41.76
MQTL48 D13 FL, FS, FM, FU, FE 14 29.39 26.35-32.43 HAU2497-NAU2697 3.89-3.90
MQTL49 D13 FL, FS, FM, FU, FE 13 39.30 36.04-42.56 NAU3203-Gh678 4.67-13.06
MQTL50 D13 FL, FS, FM, FU, FE 14 61.66 55.65-67.67 NAU3211-DPL0807 36.96-47.47
MQTL51 D05 FE 3 38.98 29.93-48.03 JESPR023-BNL1706 47.10-56.76
MQTL52 D05 FL, FS, FM, FU, FE 13 75.70 66.66-84.74 NAU0986-TMB1282 24.28-29.20
MQTL53 D05 FL, FS, FM, FU, FE 10 86.01 77.06-94.96 NAU4042-DPL0071 21.02-26.95
MQTL54 D10 FL, FS, FM, FU 5 37.97 21.51-54.43 NAU2139-NAU1280 58.15-62.56
MQTL55 D10 FL, FS, FM 5 67.83 64.43-71.23 DPL0026-BNL0169 54.87-56.50
MQTL56 D11 FL, FS, FM, FU 11 78.88 78.11-79.65 BNL1034-DPL0062 5.81-6.88
MQTL57 D04 FS, FM,FU, FE 5 47.74 36.75-58.73 NAU3591-TMB1919 7.37-40.77
MQTL58 D09 FM, FU, FE 4 37.26 31.08-43.44 HAU2382-MUSS300 118.32-5.93
MQTL59 D09 FL, FS, FM, FU, FE 13 51.28 37.16-65.40 HAU2893-NAU6323 22.91-34.72
MQTL60 D09 FL, FS, FM, FU, FE 17 68.45 64.96-71.94 BNL3823-TMB2943 22.91-29.65
MQTL61 D09 FL, FS, FM, FU, FE 17 80.75 78.85-82.65 NAU5350-BNL3031 32.83-33.44
MQTL62 D08 FL, FM, FU, FE 8 32.17 24.44-39.90 DPL0353-JESPR308 63.37-65.27
MQTL63 D08 FL, FS, FM, FU 16 51.53 46.32-56.74 NAU2306-DPL0461 59.84-61.66
MQTL64 D08 FL, FS, FM, FU 14 60.37 57.33-63.41 DPL0461-NAU0478 57.76-59.84
MQTL65 D08 FL, FS, FM, FU 14 66.90 64.47-69.33 NAU0478-NAU4099 57.32-57.76
MQTL66 D08 FS, FU, FE 5 79.51 76.98-82.04 NAU1197-BNL2616 50.79-51.85
MQTL67 D06 FL, FS, FM, FE 7 26.60 9.17-44.03 HAU1324-DPL0282 59.81-62.03
MQTL68 D06 FL, FS, FM, FU, FE 20 59.55 56.92-62.18 NAU1277-NAU2397 55.43-55.56
MQTL69 D06 FL, FS, FM, FU, FE 16 67.10 58.97-75.23 NAU0928-Gh371 44.28-55.55
MQTL70 D06 FL, FS, FM, FU, FE 9 82.72 70.40-95.04 NAU2717-BNL3190 7.21-18.47
MQTL71 D12 FL, FS, FM, FU, FE 10 33.31 29.45-37.17 BNL2578-NAU1274 3.33-4.12
MQTL72 D12 FL, FS, FM, FU, FE 12 43.37 41.51-45.23 JESPR295-NAU1119 6.00-6.40
MQTL73 D12 FL, FS, FM, FU, FE 12 49.62 44.68-54.56 NAU1039-NAU2857 6.09-8.23
MQTL74 D12 FL, FS, FM, FU, FE 11 62.68 57.30-68.06 BNL3510-BNL1669 21.35-31.49

图2

棉花纤维品质Meta-QTL和RNA-seq整合分析结果 A为5917和Piams-7不同纤维发育时期差异表达基因的火山图; B为棉花纤维品质Meta-QTL和RNA-seq的共同基因。"

图3

差异基因下调表达的GO和KEGG富集分析图 A图为278个下调差异表达基因的GO富集图; BP: 生物过程; CC: 细胞成分; MF: 分子功能。B图为278个下调差异表达基因的KEGG富集图。"

图4

差异基因上调表达的GO和KEGG富集分析图 A图为221个上调差异表达基因的GO富集图; BP: 生物过程; CC: 细胞成分; MF: 分子功能。B图为221个上调差异表达基因的KEGG富集图。"

表3

棉花纤维品质相关性状MQTL区间内候选基因"

基因序列号
Gene ID
拟南芥同源基因
Homologous genes in Arabidopsis thaliana
注释信息
Annotation information
棉花相关研究文献
Cotton related
research reports literature
Gbar_A05G037160 AT5G39670 可能是钙结合蛋白CML45
Probable calcium-binding protein CML45
[45]
Gbar_A09G014540 AT2G36026 转录抑制因子OFP6 Transcription repressor OFP6 [46-47]
Gbar_D04G012030 AT2G36950 重金属相关异戊二烯化植物蛋白6
Heavy metal-associated isoprenylated plant protein 6
Gbar_D05G026610 AT2G14900 一种富含半胱氨酸的抗菌肽 Snakin-1
Gbar_D06G016480 AT1G61800 葡萄糖-6-磷酸/磷酸转运体2
Glucose-6-phosphate/phosphate translocator 2
Gbar_D09G001430 AT5G39670 可能是钙结合蛋白CML45
Probable calcium-binding protein CML45
[45,48]
Gbar_D13G006970 AT1G69850 NRT1/ PTR蛋白家族 Protein NRT1/ PTR FAMILY
Gbar_A01G009900 AT1G20450 脱水蛋白ERD10 Dehydrin ERD10
Gbar_A01G014270 AT1G23090 可能的硫酸盐转运体3.3 Probable sulfate transporter 3.3
Gbar_A01G016110 AT4G38770 富含脯氨酸的蛋白质2 Proline-rich protein 2
Gbar_A05G035190 AT5G05960 可能是非特异性脂质转移蛋白2
Probable non-specific lipid-transfer protein 2
Gbar_A06G016660 AT5G47550 半胱氨酸蛋白酶抑制剂5 Cysteine proteinase inhibitor 5
Gbar_A12G003760 AT4G38670 肌动蛋白解聚因子5 Actin-depolymerizing factor 5 [49]
Gbar_D01G020370 AT2G41290 蛋白质类缩糖醇合酶2
Protein STRICTOSIDINE SYNTHASE-LIKE 2
Gbar_D03G011950 AT4G24910 不规则木质部15 Protein IRREGULAR XYLEM 15 [50]
Gbar_D05G023780 AT4G08300 相关蛋白At4g08300 WAT1-related protein At4g08300
Gbar_D08G020390 AT5G23860 微管蛋白-9链 Tubulin beta-9 chain
Gbar_D08G020540 AT5G44340 微管蛋白-1链 Tubulin beta-1 chain
Gbar_D08G020920 AT3G07590 小核糖核蛋白SmD1b Small nuclear ribonucleoprotein SmD1b
Gbar_D09G001560 AT5G15230 赤霉素调节蛋白4 Gibberellin-regulated protein 4 [51-52]
Gbar_D03G011120 AT5G51190 乙烯应答转录因子ERF105
Ethylene-responsive transcription factor ERF105
[53-54]
Gbar_D05G035740 AT3G15210 乙烯应答转录因子4 Ethylene-responsive transcription factor 4 [53-54]
Gbar_A01G014360 AT1G23190 葡萄糖磷酸变位酶, 胞质 Phosphoglucomutase, cytoplasmic
Gbar_A05G040040 AT4G39490 烷烃羟化酶MAH1 Alkane hydroxylase MAH1
Gbar_D04G009400 AT2G41970 可能是蛋白激酶At2g41970 Probable protein kinase At2g41970
Gbar_A11G006280 AT1G06280 含LOB结构域的蛋白2 LOB domain-containing protein 2 [55]
Gbar_A05G041330 AT1G24430 维诺任碱合酶 Vinorine synthase
Gbar_A06G018130 AT5G04530 3-酮酰基辅酶a合成酶19 3-ketoacyl-CoA synthase 19 [56-57]
Gbar_A10G022590 AT2G39420 咖啡酰莽草酸酯酶 Caffeoylshikimate esterase
Gbar_D01G021770 AT2G36460 果糖-二磷酸醛缩酶6, 胞质
Fructose-bisphosphate aldolase 6, cytosolic
Gbar_D04G006470 AT1G75270 谷胱甘肽S-转移酶DHAR2 Glutathione S-transferase DHAR2 [58]
Gbar_D07G015210 AT3G61640 阿拉伯半乳聚糖肽20 Arabinogalactan peptide 20

图5

32个候选基因表达量热图 A图为13个下调差异表达的候选基因在5917和Pima S-7材料中不同纤维发育时期表达量热图; B图为19个上调差异表达的候选基因在5917材料和Pima S-7材料中不同纤维发育时期表达量热图。"

图6

32个候选基因荧光定量热图"

附图1

32个候选基因的荧光定量检测 *、**分别表示在0.05和0.01水平差异显著。"

图7

6个候选基因的荧光定量检测 *、**分别表示在0.05和0.01水平上差异显著。"

[1] Wendel J F, Grover C E.Taxonomy and evolution of the cotton genus, GossypiumIn: Cotton. Madison, WI, USA: American Society of Agronomy, Inc., Crop Science Society of America, Inc., and Soil Science Society of America, Inc., 2015.
[2] 杨君, 马峙英, 王省芬. 棉花纤维品质改良相关基因研究进展. 中国农业科学, 2016, 49: 4310-4322.
doi: 10.3864/j.issn.0578-1752.2016.22.005
Yang J, Ma Z Y, Wang X F. Progress in studies on genes related to fiber quality improvement of cotton. Sci Agric Sin, 2016, 49: 4310-4322 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2016.22.005
[3] 郭晓豪, 王寒涛, 魏鑫, 张晶晶, 付小康, 马亮, 魏恒玲, 喻树迅. 基于两个陆地棉低世代群体定位纤维品质相关QTL. 棉花学报, 2021, 33: 33-41.
doi: 10.11963/1002-7807.gxhysx.20201229
Guo X H, Wang H T, Wei X, Zhang J J, Fu X K, Ma L, Wei H L, Yu S X. QTL mapping of fiber quality traits in two lower generation populations of upland cotton. Cotton Sci, 2021, 33: 33-41 (in Chinese with English abstract).
doi: 10.11963/1002-7807.gxhysx.20201229
[4] 李兴河, 王海涛, 刘存敬, 唐丽媛, 张素君, 蔡肖, 张香云, 张建宏. 利用海岛棉染色体片段导入系定位纤维品质性状QTL. 作物杂志, 2023, (5): 1-9.
Li X H, Wang H T, Liu C J, Tang L Y, Zhang S J, Cai X, Zhang X Y, Zhang J H. QTL mapping for fiber quality traits using Gossypium barbadense chromosome segment introgression lines. Crops, 2023, (5): 1-9 (in Chinese with English abstract).
[5] 姜骁.中棉所70重组自交系群体纤维品质QTL和优质基因全基因组挖掘. 中国农业科学院博士学位论文, 北京, 2021.
Jiang X.Genome-wide Mining of Fiber Quality QTL and High-quality Genes in Recombinant Inbred Line Population of China Cotton Institute 70. PhD Dissertation of Chinese Academy of Agricultural Sciences, Beijing, China, 2021 (in Chinese with English abstract).
[6] Madden L V, Piepho H P, Paul P A. Statistical models and methods for network meta-analysis. Phytopathology, 2016, 106: 792-806.
doi: 10.1094/PHYTO-12-15-0342-RVW pmid: 27111798
[7] Arcade A, Labourdette A, Falque M, Mangin B, Chardon F, Charcosset A, Joets J. BioMercator: integrating genetic maps and QTL towards discovery of candidate genes. Bioinformatics, 2004, 20: 2324-2326.
doi: 10.1093/bioinformatics/bth230 pmid: 15059820
[8] 左煜昕, 马靖福, 刘媛, 张沛沛, 栗孟飞, 程宏波, 陈思瑾, 幸华, 杨德龙. 小麦穗粒数QTL整合与元分析. 麦类作物学报, 2020, 40: 771-779.
Zuo Y X, Ma J F, Liu Y, Zhang P P, Li M F, Cheng H B, Chen S J, Xing H, Yang D L. Mapping and meta-analysis of QTLs for the kernel number per spike in wheat (Triticum aestivum L.). J Triticeae Crops, 2020, 40: 771-779 (in Chinese with English abstract).
[9] 闫伟, 李元, 宋茂兴, 张旷野, 孙铭泽, 瞿会, 李凤海, 钟雪梅, 朱敏, 杜万里, 等. 玉米抗灰斑病QTL元分析及其验证. 作物学报, 2016, 42: 758-767.
doi: 10.3724/SP.J.1006.2016.00758
Yan W, Li Y, Song M X, Zhang K Y, Sun M Z, Qu H, Li F H, Zhong X M, Zhu M, Du W L, et al. Meta-analysis and validation of QTL for resistance to gray leaf spot in maize. Acta Agron Sin, 2016, 42: 758-767 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2016.00758
[10] 程宇坤, 何万龙, 任毅, 耿洪伟. 小麦耐盐性QTL的元分析. 麦类作物学报, 2023, 43: 1319-1325.
Cheng Y K, He W L, Ren Y, Geng H W. Meta-analysis of QTL for wheat salt tolerance. J Triticeae Crops, 2023, 43: 1319-1325 (in Chinese with English abstract).
[11] 杨鑫雷, 周晓栋, 王省芬, 李志坤, 张艳, 刘恒蔚, 吴立强, 张桂寅, 马峙英. 棉花纤维品质性状QTL的元分析. 棉花学报, 2013, 25: 503-509.
doi: 10.11963/cs130605
Yang X L, Zhou X D, Wang X F, Li Z K, Zhang Y, Liu H W, Wu L Q, Zhang G Y, Ma Z Y. Quantitative traits locus meta-analysis of fiber quality traits in cotton. Cotton Sci, 2013, 25: 503-509 (in Chinese with English abstract).
[12] Said J I, Lin Z X, Zhang X L, Lin Z X, Zhang X L, Song M Z, Zhang J F. A comprehensive meta QTL analysis for fiber quality, yield, yield related and morphological traits, drought tolerance, and disease resistance in tetraploid cotton. BMC Genomics, 2013, 14: 776.
doi: 10.1186/1471-2164-14-776 pmid: 24215677
[13] Said J I, Song M Z, Wang H T, Lin Z X, Zhang X L, Fang D D, Zhang J F. A comparative meta-analysis of QTL between intraspecific Gossypium hirsutum and interspecific G. hirsutum × G. barbadense populations. Mol Genet Genomics, 2015, 290: 1003-1025.
[14] Darvasi A, Soller M. A simple method to calculate resolving power and confidence interval of QTL map location. Behav Genet, 1997, 27: 125-132.
doi: 10.1023/a:1025685324830 pmid: 9145551
[15] Blenda A, Fang D D, Rami J F, Garsmeur O, Luo F, Lacape J M. A high-density consensus genetic map of tetraploid cotton that integrates multiple component maps through molecular marker redundancy check. PLoS One, 2012, 7: e45739.
[16] Glass G V. Primary, secondary, and meta-analysis of research. Educ Res, 1976, 5: 3.
[17] Duan Y J, Chen Q, Chen Q J, Zheng K, Cai Y S, Long Y L, Zhao J Y, Guo Y P, Sun F L, Qu Y Y.Analysis of transcriptome data and quantitative trait loci enables the identification of candidate genes responsible for fiber strength in Gossypium barbadense. G3 (Bethesda), 2022, 12: jkac167.
[18] Goldberg D H, Victor J D, Gardner E P, Gardner D. Spike train analysis toolkit: enabling wider application of information-theoretic techniques to neurophysiology. Neuroinformatics, 2009, 7: 165-178.
doi: 10.1007/s12021-009-9049-y pmid: 19475519
[19] Kroll K W, Mokaram N E, Pelletier A R, Frankhouser D E, Westphal M S, Stump P A, Stump C L, Bundschuh R, Blachly J S, Yan P. Quality control for RNA-seq (QuaCRS): an integrated quality control pipeline. Cancer Inform, 2014, 13: 7-14.
[20] Bolger A M, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 2014, 30: 2114-2120.
doi: 10.1093/bioinformatics/btu170 pmid: 24695404
[21] Pertea M, Kim D, Pertea G M, Leek J T, Salzberg S L. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat Protoc, 2016, 11: 1650-1667.
doi: 10.1038/nprot.2016.095 pmid: 27560171
[22] Wang M J, Tu L L, Yuan D J, Zhu D, Shen C, Li J Y, Liu F Y, Pei L L, Wang P C, Zhao G N, et al. Reference genome sequences of two cultivated allotetraploid cottons, Gossypium hirsutum and Gossypium barbadense. Nat Genet, 2019, 51: 224-229.
[23] Liao Y, Smyth G K, Shi W. FeatureCounts: an efficient general-purpose program for assigning sequence reads to genomic features. Bioinformatics, 2014, 30: 923-930.
[24] 邓晓英.杂交棉中棉所70产量和纤维品质性状的QTL定位. 山西农业大学硕士学位论文, 山西太谷, 2016.
Deng X Y.Identification of QTL for Yield and Fiber Quality Traits in Hybrid Cotton CCRI 70 MS Thesis of Shanxi Agricultural University, Taigu, Shanxi, China, 2016 (in Chinese with English abstract).
[25] 郭丽雪, 石玉真, 李俊文, 龚举武, 刘爱英, 商海红, 巩万奎, 陈婷婷, 葛群, 孙杰, 等. 陆海渐渗系分离群体(F2)产量和纤维品质性状的QTL定位. 棉花学报, 2015, 27: 550-560.
doi: 10.11963/issn.1002-7807.201506007
Guo L X, Shi Y Z, Li J W, Gong J W, Liu A Y, Shang H H, Gong W K, Chen T T, Ge Q, Sun J, et al. Mapping QTL of fiber yield and quality traits in F2 populations of chromosome segment substitution lines from Gossypium hirsutum × Gossypium barbadense Cotton Sci, 2015, 27: 550-560 (in Chinese with English abstract).
[26] 何蕊.陆地棉中棉所36背景的海岛棉染色体片段代换系(BC5F3、BC5F3:4、BC5F3:5)的评价及QTL定位. 西南大学硕士学位论文, 重庆, 2014.
He R. The Evaluation and Identifying QTL of Chromosome Segment Substitution Lines (BC5F3, BC5F3:4, C5F3:5) in CCRI36 Background of Gossypium hirsutum L. MS Thesis of Southwest University, Chongqing, China, 2014 (in Chinese with English abstract).
[27] 江晗.陆地棉超高强纤维品质与产量相关性状的QTL定位. 南京农业大学硕士学位论文, 江苏南京, 2013.
Jiang H. QTL Mapping of Fiber Qualities and Yield Components in Ultra-high Strength Upland Cotton. MS Thesis of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2013 (in Chinese with English abstract).
[28] 焦梦佳. 利用棉花优质渐渗系进行纤维长度及其相关性状QTL的定位. 山东师范大学硕士学位论文, 山东济南, 2020.
Jiao M J. QTL Mapping for Fiber Length and Other Related Traits of Cotton Using Elite Germplasm with Introgression of Gossypium barbadense. MS Thesis of Shandong Normal University, Jinan, Shandong, China, 2020 (in Chinese with English abstract).
[29] 李爱国.AB-QTL法定位海岛棉产量及纤维品质基因. 湖南农业大学硕士学位论文, 湖南长沙, 2008.
Li A G. QTL Analysis of Fiber Yield and Quality Using Gossypium hirsutum × G. Barbadense Advanced Backcross Populations. MS Thesis of Hunan Agricultural University, Changsha, Hunan, China, 2008 (in Chinese with English abstract).
[30] Liang Q Z, Hu C, Hua H, Li Z H, Hua J P. Construction of a linkage map and QTL mapping for fiber quality traits in upland cotton (Gossypium hirsutum L.). Chin Sci Bull, 2013, 58: 3233-3243.
[31] 梁燕.早熟陆地棉染色体片段代换系的构建及QTL初步定位. 中国农业科学院硕士学位论文, 北京, 2010.
Liang Y. Construction of Chromosome Segment Substitution Lines and Primary QTL Mapping in Early-maturing Upland Cotton. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2010 (in Chinese with English abstract).
[32] 李超, 李志坤, 谷淇深, 杨君, 柯会锋, 吴立强, 王国宁, 张艳, 吴金华, 张桂寅, 等. 海岛棉CSSLs分子评价及纤维品质、产量性状QTL定位. 作物学报, 2018, 44: 1114-1126.
doi: 10.3724/SP.J.1006.2018.01114
Li C, Li Z K, Gu Q S, Yang J, Ke H F, Wu L Q, Wang G N, Zhang Y, Wu J H, Zhang G Y, et al. Molecular evaluation for chromosome segment substitution lines of Gossypium barbadense and QTL mapping for fiber quality and yield. Acta Agron Sin, 2018, 44: 1114-1126 (in Chinese with English abstract).
[33] Liu X Y, Teng Z H, Wang J X, Wu T T, Zhang Z Q, Deng X P, Fang X M, Tan Z Y, Ali I, Liu D X, et al. Enriching an intraspecific genetic map and identifying QTL for fiber quality and yield component traits across multiple environments in Upland cotton (Gossypium hirsutum L.). Mol Genet Genomics, 2017, 292: 1281-1306.
[34] 秦永生.陆地棉重要农艺性状QTL定位研究. 南京农业大学硕士学位论文, 江苏南京, 2009.
Qin Y S. Research on QTL Mapping for Agronomic Traits in Upland Cotton. MS Thesis of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2009 (in Chinese with English abstract).
[35] Sun F D, Zhang J H, Wang S F, Gong W K, Shi Y Z, Liu A Y, Li J W, Gong J W, Shang H H, Yuan Y L. QTL mapping for fiber quality traits across multiple generations and environments in upland cotton. Mol Breed, 2012, 30: 569-582.
[36] Wang F R, Xu Z Z, Sun R, Gong Y C, Liu G D, Zhang J X, Wang L M, Zhang C Y, Fan S J, Zhang J. Genetic dissection of the introgressive genomic components from Gossypium barbadense L. that contribute to improved fiber quality in Gossypium hirsutum L. Mol Breed, 2013, 32: 547-562.
[37] 王娟, 郭旺珍, 张天真. 渝棉1号优质纤维QTL的标记与定位. 作物学报, 2007, 33: 1915-1921.
Wang J, Guo W Z, Zhang T Z.QTL mapping for fiber quality properties in cotton cultivar Yumian 1. Acta Agron Sin, 2007, 33: 1915-1921 (in Chinese with English abstract).
[38] 王义青.陆地棉优异纤维品质及产量性状的QTL挖掘. 中国农业科学院硕士学位论文, 北京, 2010.
Wang Y Q. Identification of QTLs for Yield and Elite Fiber Quality Traits in Upland Cotton (Gossypium hirsutum L.). MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2010 (in Chinese with English abstract).
[39] 杨芮, 李鹏涛, 肖向辉, 李俊文, 龚举武, 刘爱英, 巩万奎, 商海红, 葛群, 卢全伟, 等. 棉花陆海渐渗系次级分离群体产量和纤维品质QTL定位. 棉花学报, 2022, 34: 401-415.
doi: 10.11963/cs20200073
Yang R, Li P T, Xiao X H, Li J W, Gong J W, Liu A Y, Gong W K, Shang H H, Ge Q, Lu Q W, et al. QTL mapping for yield and fiber quality traits in secondary segregate population of cotton chromosome segment introgression lines. Cotton Sci, 2022, 34: 401-415 (in Chinese with English abstract).
doi: 10.11963/cs20200073
[40] 杨昶, 郭旺珍, 张天真. 陆地棉抗黄萎病、纤维品质和产量等农艺性状的QTL定位. 分子植物育种, 2007, 5: 797-805.
Yang C, Guo W Z, Zhang T Z. QTL mapping for resistance to Verticillium wilt, fiber quality and yield traits in upland cotton (Gossypium hirsutum L.). Mol Plant Breed, 2007, 5: 797-805 (in Chinese with English abstract).
[41] 杨泽茂.陆地棉染色体片段代换系的构建及QTL定位初探. 湖南农业大学硕士学位论文, 湖南长沙, 2009.
Yang Z M. Development of Chromosome Segment Substitution Lines and Primary Identification of QTL in Upland Cotton (Gossypium hirsutum). MS Thesis of Hunan Agricultural University, Changsha, Hunan, China, 2009 (in Chinese with English abstract).
[42] Chen Y, Liu G D, Ma H H, Song Z Q, Zhang C Y, Zhang J X, Zhang J H, Wang F R, Zhang J. Identification of introgressed alleles conferring high fiber quality derived from Gossypium barbadense L. in secondary mapping populations of G. hirsutum L. Front Plant Sci, 2018, 9: 1023.
doi: 10.3389/fpls.2018.01023 pmid: 30073008
[43] Yu J W, Yu S X, Gore M, Wu M, Zhai H H, Li X L, Fan S L, Song M Z, Zhang J F. Identification of quantitative trait loci across interspecific F2, F2:3 and testcross populations for agronomic and fiber traits in tetraploid cotton. Euphytica, 2013, 191: 375-389.
[44] 周晓栋.棉纤维品质主效QTL的挖掘与验证. 河北农业大学硕士学位论文, 河北保定, 2013.
Zhou X D. Mining and Identification of Major QTL for Fiber Quality in Allotetraploid Cotton. MS Thesis of Hebei Agricultural University, Baoding, Hebei, China, 2013 (in Chinese with English abstract).
[45] Nnaemeka Ekene Vitalis.GhC/VIF2, GhCML45和GhMYB308调控陆地棉纤维发育的机理探讨. 浙江理工大学硕士学位论文, 浙江杭州, 2022.
Nnaemeka E V. Exploring the Mechanism of GhC/VIF2, GhCML45 and GhMYB308 Regulating the Fiber Development in Upland Cotton. MS Thesis of Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China, 2022 (in Chinese with English abstract).
[46] 窦玲玲, 田再垄, 李婷婷, 马雄风, 肖光辉. 陆地棉OFP基因家族的全基因组鉴定及表达分析. 中国科学: 生命科学, 2022, 52: 510-522.
Dou L L, Tian Z L, Li T T, Ma X F, Xiao G H. Genome-wide identification and expression analysis of OFP gene family in upland cotton. Sci Sin Vitae, 2022, 52: 510-522 (in Chinese with English abstract).
[47] 张丽雅.棉花黄萎病抗性相关基因GhPrx14的功能分析和棉花OFP家族的生物信息学分析. 郑州大学硕士学位论文, 河南郑州, 2022.
Zhang L Y. Functional Analysis of Cotton Verticillium Wilt Resistance Related Gene GhPrxl4 and Bioinformatics Analysis of OFP Family in Cotton. MS Thesis of Zhengzhou University, Zhengzhou, Henan, China, 2022 (in Chinese with English abstract).
[48] 王艳鸽, 孙全, 李祖亮. 棉花GbCML24基因的克隆及其功能分析. 分子植物育种, 2019, 17: 4873-4882.
Wang Y G, Sun Q, Li Z L. Cloning and functional analysis of cotton (Gossypium barbadense) GbCML24 gene. Mol Plant Breed, 2019, 17: 4873-4882 (in Chinese with English abstract).
[49] 张成伟, 郭林林, 王秀兰, 张辉, 石海燕, 许文亮, 李学宝. 4个棉花ADF基因的分子鉴定及其差异表达. 遗传学报, 2007, 34: 347-354.
Zhang C W, Guo L L, Wang X L, Zhang H, Shi H Y, Xu W L, Li X B. Molecular characterization of four ADF genes differentially expressed in cotton. J Genet Genom, 2007, 34: 347-354 (in Chinese with English abstract).
[50] Chen F, Guo Y J, Chen L, Gan X L, Liu M, Li J, Xu W L. Global identification of genes associated with xylan biosynthesis in cotton fiber. J Cotton Res, 2020, 3: 25.
[51] 李颖, 彭佳泺, 巨吉生, 王彩香, 宿俊吉. 响应赤霉素GA3调控陆地棉开花关键基因GhGASA9GhGASA14的鉴定. 见: 第二十届中国作物学会学术年会论文摘要集. 北京: 中国作物学会, 2023. p 1.
Li Y, Peng J L, Ju J S, Wang J J, Su J J. Identification of key flowering genes GhGASA9 and GhGASA14 in response to gibberellin GA3 regulation in upland cotton. In: Abstracts of the 20th Annual Meeting of the Crop Science Society of China. Beijing: the Crop Science Society of China, 2023. p 1 (in Chinese with English abstract).
[52] Qiao K K, Ma C K, Lyu J Y, Zhang C J, Ma Q F, Fan S L. Identification, characterization, and expression profiles of the GASA genes in cotton. J Cotton Res, 2021, 4: 7.
[53] 高雅楠.GhERF41调控初生壁与次生壁合成的研究. 郑州大学硕士学位论文, 河南郑州, 2022.
Gao Y N. Study on the Roles of GhERF41 in Regulating Biosynthesis of Primary Cell Wall and Secondary Cell Wall. MS Thesis of Zhengzhou University, Zhengzhou, Henan, China, 2022 (in Chinese with English abstract).
[54] 何绍萍.GhERF108调控棉纤维细胞次生壁发育的机制研究. 华中师范大学硕士学位论文, 湖北武汉, 2020.
He S P. The Role of GhERF108 in Regulating Secondary Cell Wall Synthesis of Cotton Fibers. MS Thesis of Central China Normal University, Wuhan, Hubei, China, 2020 (in Chinese with English abstract).
[55] 王晔.亚洲棉LBDs同源基因的克隆及应用. 华中农业大学硕士学位论文, 湖北武汉, 2015.
Wang Y. Molecular Cloning and Application of LBDs from Cotton (Gossypium arboreum L.). MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2015 (in Chinese with English abstract).
[56] 汤孟玲.GbKCS14响应温度调控棉纤维发育的分子机理. 浙江农林大学硕士学位论文, 浙江杭州, 2019.
Tang M L. Molecular Mechanism of GbKCS14 Responsive to Temperature in Regulation of Cotton Fiber Development. MS Thesis of Zhejiang A&F University, Hangzhou, Zhejiang, China, 2019 (in Chinese with English abstract).
[57] 杜雪琼.棉花纤维发育相关基因GhKCS13的克隆与功能验证. 华中农业大学硕士学位论文, 湖北武汉, 2011.
Du X Q. Cloning and Function Analysis of GhKCS13 in Cotton Fiber. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2011 (in Chinese with English abstract).
[58] 闫飞林.棉花纤维起始相关长链非编码RNA的功能鉴定. 华中农业大学硕士学位论文, 湖北武汉, 2019.
Yan F L. The Functional Identification of Long non-coding RNA Related to Cotton Fiber Initial. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2019 (in Chinese with English abstract).
[59] Tan H Z, Tang B H, Sun M L, Yin Q L, Ma Y Z, Li J Y, Wang P C, Li Z H, Zhao G N, Wang M J, et al. Identification of new cotton fiber-quality QTL by multiple genomic analyses and development of markers for genomic breeding. Crop J, 2024, 12: 866-879.
doi: 10.1016/j.cj.2024.03.014
[60] Wang M J, Qi Z Y, Thyssen G N, Naoumkina M, Jenkins J N, McCarty J C, Xiao Y J, Li J Y, Zhang X L, Fang D D. Genomic interrogation of a MAGIC population highlights genetic factors controlling fiber quality traits in cotton. Commun Biol, 2022, 5: 60-60.
doi: 10.1038/s42003-022-03022-7 pmid: 35039628
[61] 李娜, 王鹏, 孔斌雪, 马靖福, 窦佳欣, 陈涛, 张沛沛, 刘媛, 杨德龙. 小麦品质性状QTL元分析及候选基因挖掘. 农业生物技术学报, 2024, 32: 11-25.
Li N, Wang P, Kong B X, Ma J F, Dou J X, Chen T, Zhang P P, Liu Y, Yang D L. Meta-analysis of QTL and mining of candidate genes for quality traits in wheat (Triticum aestivum). J Agric Biotechnol, 2024, 32: 11-25 (in Chinese with English abstract).
[62] 邵晓宇, 宋希云, 潘顺祥, 赵美爱. 玉米穗粗性状的全基因组关联分析及QTL元分析. 植物生理学报, 2017, 53: 2091-2102.
Shao X Y, Song X Y, Pan S X, Zhao M A. Genome-wide association study and Meta-QTL analysis of ear diameter trait in maize. Plant Physiol J, 2017, 53: 2091-2102 (in Chinese with English abstract).
[63] Xu S D, Pan Z Y, Yin F F, Yang Q Y, Lin Z X, Wen T W, Zhu L F, Zhang D W, Nie X H. Identification of candidate genes controlling fiber quality traits in upland cotton through integration of meta-QTL, significant SNP and transcriptomic data. J Cotton Res, 2020, 3: 34.
[64] 何永辉.棉花钙调素与类钙调素基因家族表达分析及棉花纤维离子组测定. 华中农业大学硕士学位论文, 湖北武汉, 2015.
He Y H. Expression Analysis of Calmodulin and Calmodulin-like Gene Family and Ionome Analysis of Cotton Fiber. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2015 (in Chinese with English abstract).
[65] Bao Y, Wei Y Y, Liu Y L, Gao J J, Cheng S, Liu G Q, You Q, Liu P, Lu Q W, Li P T, et al. Genome-wide chromatin accessibility landscape and dynamics of transcription factor networks during ovule and fiber development in cotton. BMC Biol, 2023, 21: 165.
doi: 10.1186/s12915-023-01665-4 pmid: 37525156
[66] Olas J J, Apelt F, Annunziata M G, John S, Richard S I, Gupta S, Kragler F, Balazadeh S, Mueller-Roeber B.Primary carbohydrate metabolism genes participate in heat-stress memory at the shoot apical meristem of Arabidopsis thaliana. Mol Plant, 2021, 14: 1508-1524.
[67] Yu S H, Wu J X, Sun Y M, Zhu H F, Sun Q G, Zhao P C, Huang R S, Guo Z F. A calmodulin-like protein (CML10) interacts with cytosolic enzymes GSTU8 and FBA6 to regulate cold tolerance. Plant Physiol, 2022, 190: 1321-1333.
doi: 10.1093/plphys/kiac311 pmid: 35751606
[68] Tian X H, Ji M Y, You J Q, Zhang Y Q, Lindsey K, Zhang X L, Tu L L, Wang M J. Synergistic interplay of redox homeostasis and polysaccharide synthesis promotes cotton fiber elongation. Plant J, 2024, 118: 405-422.
[1] 王亚雯, 戚正阳, 尤佳琦, 聂新辉, 曹娟, 杨细燕, 涂礼莉, 张献龙, 王茂军. 棉花60K功能位点基因芯片的制备及应用[J]. 作物学报, 2025, 51(5): 1178-1188.
[2] 谢章书, 谢学方, 屠小菊, 刘爱玉, 董合忠, 周仲华. 植物激素对棉花蕾铃脱落的调控研究进展[J]. 作物学报, 2025, 51(1): 1-29.
[3] 辛明华, 秘雅迪, 王国平, 李小飞, 李亚兵, 董合林, 韩迎春, 冯璐. 行距配置和种植密度对棉花干物质生产及产量的影响[J]. 作物学报, 2025, 51(1): 221-232.
[4] 李超, 付小琼. 基于GYT双标图综合评价黄河流域中熟杂交棉花区域试验品种[J]. 作物学报, 2025, 51(1): 30-43.
[5] 艾莎, 李莎, 方治伟, 李论, 李甜甜, 高利芬, 陈利红, 肖华锋, 万人静, 闫多子, 武星廷, 彭海, 韩瑞玺, 周俊飞. 棉花MNP标记位点开发及其在DNA指纹图谱构建中的应用[J]. 作物学报, 2024, 50(9): 2267-2278.
[6] 李航, 刘丽, 黄乾, 刘文豪, 司爱君, 孔宪辉, 王旭文, 赵福相, 梅拥军, 余渝. 棉花种质资源萌发期耐盐性鉴定及筛选[J]. 作物学报, 2024, 50(5): 1147-1157.
[7] 乐愉, 王涛, 张献龙, 林忠旭. 陆地棉重组自交系再生能力和遗传转化效率筛选[J]. 作物学报, 2024, 50(5): 1172-1180.
[8] 刘成敏, 门雅琦, 秦都林, 闫晓宇, 张乐, 孟浩, 苏寻雅, 孙学振, 宋宪亮, 毛丽丽. 长期秸秆还田下施氮量对棉花产量和氮素利用的影响[J]. 作物学报, 2024, 50(4): 1043-1052.
[9] 柯会锋, 苏红梅, 孙正文, 谷淇深, 杨君, 王国宁, 徐东永, 王洪这, 吴立强, 张艳, 张桂寅, 马峙英, 王省芬. 棉花现代品种资源产量与纤维品质性状鉴定及分子标记评价[J]. 作物学报, 2024, 50(2): 280-293.
[10] 李志坤, 贾文华, 朱伟, 刘伟, 马宗斌. 氮肥和缩节胺对棉花纤维产量及品质时间分布的影响[J]. 作物学报, 2024, 50(2): 514-528.
[11] 尚红燕, 普静, 柯会锋, 谷淇深, 孙正文, 杨君, 王国宁, 张艳, 卢怀玉, 徐东永, 吴立强, 马峙英, 王省芬, 吴金华. 不同种植环境下国内外棉花种质资源的遗传多样性分析与评价[J]. 作物学报, 2024, 50(10): 2528-2537.
[12] 肖胜华, 董贤镘, 彭鑫, 李安子, 闭兆福, 廖铭静, 黄礼豪, 管倩倩, 胡琴, 朱龙付. 转录因子GhWRKY41促进水杨酸合成增强棉花对黄萎病菌的抗性[J]. 作物学报, 2024, 50(10): 2447-2457.
[13] 陈旭升, 赵亮, 狄佳春. 陆地棉抗虫与抗草甘膦基因的分子聚合及经济性状相关分析[J]. 作物学报, 2024, 50(10): 2637-2642.
[14] 郭家鑫, 叶扬, 郭慧娟, 闵伟. 盐碱胁迫对棉花叶片蛋白质组的影响及差异性分析[J]. 作物学报, 2024, 50(1): 219-236.
[15] 肖胜华, 陆妍, 李安子, 覃耀斌, 廖铭静, 闭兆福, 卓柑锋, 朱永红, 朱龙付. 棉花AP2/ERF转录因子GhTINY2负调控植株抗盐性的功能分析[J]. 作物学报, 2024, 50(1): 126-137.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!