欢迎访问作物学报,今天是

作物学报 ›› 2025, Vol. 51 ›› Issue (6): 1538-1547.doi: 10.3724/SP.J.1006.2025.41063

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

早熟小麦品种扬麦37主要目标性状的遗传构成分析

吕国锋(), 范金平, 吴素兰, 张晓, 赵仁慧, 李曼, 王玲, 高德荣, 别同德, 刘健   

  1. 江苏里下河地区农业科学研究所/农业农村部长江中下游小麦生物学与遗传育种重点实验室, 江苏扬州 225007
  • 收稿日期:2024-09-30 接受日期:2025-03-26 出版日期:2025-06-12 网络出版日期:2025-04-07
  • 通讯作者: *吕国锋, E-mail: lgf@wheat.org.cn
  • 基金资助:
    本研究由国家重点研发计划项目(2024YFD1201100);江苏省种业振兴项目(JBGS(2021)049)

Genetic analysis of key target traits in the early-maturing wheat cultivar Yangmai 37

LYU Guo-Feng(), FAN Jin-Ping, WU Su-Lan, ZHANG Xiao, ZHAO Ren-Hui, LI Man, WANG Ling, GAO De-Rong, BIE Tong-De, LIU Jian   

  1. Lixiahe Institute of Agricultural Sciences / Key Laboratory of Wheat Biology and Genetic Improvement for Lower & Middle Yangtze Valley, Ministry of Agriculture and Rural Affairs, Yangzhou 225007, Jiangsu, China
  • Received:2024-09-30 Accepted:2025-03-26 Published:2025-06-12 Published online:2025-04-07
  • Contact: *E-mail: lgf@wheat.org.cn
  • Supported by:
    the National Key R&D Program of China(2024YFD1201100);the Jiangsu Province Seed Industry Revitalization Project of China(JBGS(2021)049)

摘要: 冬春小麦杂交是拓宽小麦品种遗传基础的重要途径。通过对冬春杂交育成品种扬麦37及其母本春性品种镇麦9号和父本半冬性品种邯6172的生育期、产量相关性状、抗病性和品质等育种目标性状的测定以及64个上述性状相关基因的分子检测, 分析扬麦37的遗传构成以及育种目标性状相关基因在育种过程中的选择情况。结果表明, 扬麦37比镇麦9号成熟期早4 d。扬麦37与镇麦9号株高相近, 每平方米穗数和千粒重介于双亲之间, 每穗粒数高于双亲。扬麦37和镇麦9号均为中抗小麦赤霉病, 和邯6172均感小麦白粉病和黄花叶病。扬麦37蛋白质含量和镇麦9号相近, 面团稳定时间明显低于镇麦9号。母本镇麦9号和父本邯6172对扬麦37的遗传贡献率分别为62.5%和37.5%。扬麦37与母本镇麦9号的春化、光周期和开花基因单倍型相同。扬麦37遗传了镇麦9号的矮秆基因Rht-B1b, 以及母本TaGS-D1TaSus2-2B以及父本TaSus1-7A的高粒重单倍型。扬麦37遗传了母本镇麦9号的抗赤霉病QTL QFhs.crc-2D, 丢失了母本的抗白粉病基因Pm21和抗黄花叶病QTL QYm.nau-2D。扬麦37与镇麦9号同为抗穗发芽单倍型Sdr-B1aVp-1Bc。扬麦37不含镇麦9号优质高分子量麦谷蛋白亚基(high molecular weight glutenin subunit, HMW-Gs)组合1Dx5+1Dy10, 但引入了对面筋强度有负向效应的1RS·1BL易位系。对开花期、抗穗发芽等基因的选择是扬麦37双亲特异基因不均等分配的主要原因, Pm21QYm.nau-2D1Dx5+1Dy10在品种选育过程中丢失和1RS·1BL导入是扬麦37与母本镇麦9号抗病性和品质产生差异的重要原因。

关键词: 小麦品种, 冬春小麦杂交, 育种性状, 功能基因, 遗传构成

Abstract:

Hybridization between winter and spring wheat varieties is an important approach to broaden the genetic base of wheat cultivars. Yangmai 37, an early-maturing spring wheat cultivar, was developed from a cross between the spring wheat Zhenmai 9 and the semi-winter wheat Han 6172. To investigate the genetic composition of Yangmai 37 and the selection of functional genes during its breeding process, we compared key breeding traits—including growth period, yield components, disease resistance, and quality-related traits—as well as the haplotypes of 64 functional genes associated with these traits between Yangmai 37 and its two parents. The results showed that Yangmai 37 matured four days earlier than Zhenmai 9. Its plant height was similar to Zhenmai 9, while its spike density (spikes m-2) and thousand-grain weight (TGW) were intermediate between its parents. However, its grain number per spike (grains spike-1) was higher than both parents. In terms of disease resistance, Yangmai 37 exhibited moderate resistance to Fusarium head blight (FHB), similar to Zhenmai 9, but was susceptible to powdery mildew (PM) and wheat yellow mosaic virus (WYMV), like Han 6172. The protein content of Yangmai 37 was comparable to Zhenmai 9, but its dough stability time was significantly lower. Genetic contribution analysis revealed that 62.5% of Yangmai 37’s genetic makeup originated from Zhenmai 9, while 37.5% came from Han 6172. Yangmai 37 inherited the same haplotypes for vernalization, photoperiod, and flowering genes as its female parent. It also carried the dwarf gene Rht-B1b from Zhenmai 9 and inherited high grain weight haplotypes at TaGS-D1 and TaSus2-2B from its female parent, as well as TaSus1-7A from its male parent. Additionally, Yangmai 37 retained the QTL QFhs.crc-2D, associated with FHB resistance, from Zhenmai 9 but lost the Pm21 gene for PM resistance and QYm.nau-2D, a QTL for WYMV resistance, from its female parent. For pre-harvest sprouting (PHS) resistance, Yangmai 37 harbored the same Sdr-B1a and Vp-1Bc haplotypes as Zhenmai 9. However, Yangmai 37 lacked the high-molecular-weight glutenin subunit (HMW-GS) combination 1Dx5+1Dy10, which is associated with superior gluten strength in Zhenmai 9. Instead, it inherited the 1RS·1BL translocation, known to negatively impact gluten quality, from its male parent. The selection of flowering-related genes and PHS resistance haplotypes contributed to the unequal distribution of parental alleles in Yangmai 37. Meanwhile, the loss of Pm21, QYm.nau-2D, and 1Dx5+1Dy10, along with the introduction of the 1RS·1BL translocation, were key factors influencing the differences in disease resistance and quality traits between Yangmai 37 and its female parent, Zhenmai 9.

Key words: wheat variety, winter and spring wheat hybridization, breeding trait, functional gene, genetic composition

表1

3个抗病QTL检测所用的标记"

性状
Trait
基因/QTL名称
Name of gene/QTL
染色体
Chromosome
标记名称
Marker name
参考文献
Reference
小麦赤霉病Fusarium head blight QFhs.crc-2D 2DL gwm539 [17]
小麦黄花叶病Wheat yellow mosaic virus QYm.nau-2D 2DL WXE1339 [18]
QYm.nau-5A.1 5AL wmc415 [19]

表2

扬麦37及其亲本生育期和籽粒灌浆特征参数"

品种
Cultivar
生育期Growth stage (month/day) 灌浆特征参数Grain-filling parameter
抽穗期
Heading date
开花期
Anthesis date
成熟期
Mature date
平均灌浆速率
Average grain-filling rate
(mg grain-1 d-1)
灌浆期
Grain-filling duration
(d)
邯6172 Han 6172 04/10 04/15 05/29 1.40 49.7
镇麦9号 Zhenmai 9 04/10 04/15 05/30 1.72 47.7
扬麦37 Yangmai 37 04/08 04/12 05/26 1.60 46.4

表3

扬麦37及其亲本产量相关性状和抗病性"

品种
Cultivar
产量相关性状Yield-related trait 抗病性Disease resistance
株高
Plant height
(cm)
每平方米穗数Spikes per square meter 每穗粒数Grains per spike 千粒重TGW
(g)
产量
Grain yield
(kg hm-2)
赤霉病FHB 白粉病PM 黄花叶病WYMV
邯6172 Han 6172 80 645 36.3 47.1 9105.0 MS S S
镇麦9号Zhenmai9 90 552 37.6 56.4 10,050.0 MR R R
扬麦37 Yangmai 37 87 591 39.4 52.8 9615.0 MR S S

表4

扬麦37及其亲本的品质参数"

品种
Cultivar
硬度
Grain hardness (%)
蛋白质含量Grain protein content (%) 湿面筋含量Wet gluten content (%) 吸水率
Water absorption (%)
形成时间Development time (min) 稳定时间Stability time (min) 面粉白度Flour whiteness
邯6172 Han 6172 62.6 12.91 30.56 62.30 3.2 2.9 71.2
镇麦9号 Zhenmai 9 64.2 13.64 32.50 67.50 5.0 6.9 72.6
扬麦37 Yangmai 37 65.5 13.57 25.28 65.30 2.5 2.1 69.4

表5

扬麦37及其亲本的春化、光周期和开花基因单倍型"

品种
Cultivar
春化基因
Vernalization gene
光周期基因
Photoperiod gene
开花相关基因
Flowering related gene
Vrn-A1 Vrn-B1 Vrn-D1 Ppd-A1 Ppd-B1 Ppd-D1 PPR-B1
邯6172Han 6172 vrn-A1 vrn-B1 vrn-D1 Ppd-A1b truncated copy Ppd-D1a PPR-B1a
镇麦9号Zhenmai 9 vrn-A1 vrn-B1 Vrn-D1a Ppd-A1b ins Ppd-D1a PPR-B1b
扬麦37Yangmai 37 vrn-A1 vrn-B1 Vrn-D1a Ppd-A1b ins Ppd-D1a PPR-B1b

表6

扬麦37及其亲本的株高和粒重基因单倍型"

品种
Cultivar
矮秆基因Dwarf gene 粒重相关基因Grain weight related gene
Rht-B1 Rht-D1 TaGS-D1 TaGW2-6A TaGS1a TaSus2-2B TaSus1-7A
邯6172 Han 6172 Rht-B1a Rht-D1b TaGS-D1b Hap-L Hap-I Hap-L Hap-1,3,5
镇麦9号 Zhenmai 9 Rht-B1b Rht-D1a TaGS-D1a Hap-H Hap-II Hap-H Hap-2,4
扬麦37 Yangmai 37 Rht-B1b Rht-D1a TaGS-D1a Hap-L Hap-I Hap-H Hap-1,3,5

表7

扬麦37及其亲本的抗病和抗逆基因组成"

品种
Cultivar
白粉病PM 赤霉病
FHB
黄花叶病
WYMV
叶锈病
LR
穗发芽
PHS
耐旱
Drought tolerance
Pm21 QFhs.crc-2D QYm.nau-2D Sbmp Lr68 Sdr-B1 Vp-1B Dreb-B1
邯6172 Han 6172 - - - - + Sdr-B1b Vp-1Ba, b TaDreb-B1b
镇麦9号 Zhenmai9 + + + + - Sdr-B1a Vp-1Bc TaDreb-B1a
扬麦37 Yangmai 37 - + - - - Sdr-B1a Vp-1Bc TaDreb-B1a

表8

扬麦37及其亲本的硬度及面筋强度相关基因单倍型"

品种
Cultivar
硬度基因Grain hardness gene 面筋强度相关基因Gluten strength related gene
Pina-D1 Pinb-D1 Glu-A1 Glu-B1 Glu-D1 ALPb-7A 1RS·1BL
邯6172 Han 6172 Pina-D1a Pinb-D1b 1Ax1 1Bx7+1By9 1Dx2+1Dy12 Hap1 +
镇麦9号 Zhenmai 9 Pina-D1a Pinb-D1b 1Ax1 1Bx7+1By9 1Dx5+1Dy10 Hap2 -
扬麦37 Yangmai 37 Pina-D1a Pinb-D1b 1Ax1 1Bx7+1By9 1Dx2+1Dy12 Hap2 +

表9

扬麦37及其亲本的黄色素含量和多酚氧化酶活性相关基因单倍型"

品种
Cultivar
黄色素含量相关基因
Yellow pigment content related gene
脂氧合酶基因
Lox gene
多酚氧化酶基因
PPO gene
Psy-A1 Psy-B1 Zds-A1 Pds-B1 Pod-A1 Lox-B1 Ppo-A1 Ppo-D1
镇麦9号Zhenmai 9 Psy-A1b Psy-B1c
Non Psy-B1c
Zds-A1b Pds-B1b Pod-A1a Lox-B1b Ppo-A1b Ppo-D1b
邯6172 Han 6172 Psy-A1a Psy-B1c
Non Psy-B1c
Zds-A1b Pds-B1a Pod-A1a Lox-B1a Ppo-A1a Ppo-D1a
扬麦37 Yangmai 37 Psy-A1b Psy-B1c
Non Psy-B1c
Zds-A1b Pds-B1b Pod-A1a Lox-B1b Ppo-A1b Ppo-D1a
[5] Li J, Wan H S, Yang W Y, Wang Q, Zhu X G, Hu X R, Wei H T, Tang Y L, Li C S, Peng Z S, et al. Dissection of genetic components in the new high-yielding wheat cultivar Chuanmai 104 Sci Agric Sin, 2014, 47: 2281-2291 (in Chinese with English abstract).
[6] 邹少奎, 殷贵鸿, 唐建卫, 韩玉林, 李楠楠, 李顺成, 黄峰, 王丽娜, 张倩, 高艳. 小麦新品种周麦23号的遗传构成分析及其特异引物筛选. 中国农业科学, 2015, 48: 3941-3951.
doi: 10.3864/j.issn.0578-1752.2015.19.016
Zou S K, Yin G H, Tang J W, Han Y L, Li N N, Li S C, Huang F, Wang L N, Zhang Q, Gao Y. Genetic analysis of new wheat variety Zhoumai 23 and screening of specific primers. Sci Agric Sin, 2015, 48: 3941-3951 (in Chinese with English abstract).
[7] 杨子博, 王安邦, 冷苏凤, 顾正中, 周羊梅. 小麦新品种淮麦33的遗传构成分析. 中国农业科学, 2018, 51: 3237-3248.
doi: 10.3864/j.issn.0578-1752.2018.17.001
Yang Z B, Wang A B, Leng S F, Gu Z Z, Zhou Y M.Genetic analysis of the novel high-yielding wheat cultivar Huaimai 33. Sci Agric Sin, 2018, 51: 3237-3248 (in Chinese with English abstract).
[8] 罗江陶, 郑建敏, 邓清燕, 刘培勋, 蒲宗君. 重要育种亲本川麦44对衍生品种的遗传贡献. 中国农业科学, 2021, 54: 4255-4270.
doi: 10.3864/j.issn.0578-1752.2021.20.001
Luo J T, Zheng J M, Deng Q Y, Liu P X, Pu Z J. The genetic contribution of the important breeding parent Chuanmai 44 to its derivatives. Sci Agric Sin, 2021, 54: 4255-4270 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2021.20.001
[9] Rasheed A, Wen W E, Gao F M, Zhai S N, Jin H, Liu J D, Guo Q, Zhang Y J, Dreisigacker S, Xia X C, et al. Development and validation of KASP assays for genes underpinning key economic traits in bread wheat. Theor Appl Genet, 2016, 129: 1843-1860.
doi: 10.1007/s00122-016-2743-x pmid: 27306516
[10] 权威, 马锦绣, 华正蓉, 左静红, 王伟伟, 王俊稳, 张立平, 庞斌双, 赵昌平. 我国部分审定小麦品种的品质性状及基因型分析. 植物遗传资源学报, 2023, 24: 701-718.
doi: 10.13430/j.cnki.jpgr.20221031003
Quan W, Ma J X, Hua Z R, Zuo J H, Wang W W, Wang J W, Zhang L P, Pang B S, Zhao C P. Quality analysis in a collection of wheat varieties approved in China. J Plant Genet Resour, 2023, 24: 701-718 (in Chinese with English abstract).
[11] 王君婵, 吴旭江, 胡文静, 张晓, 张勇, 高德荣, 别同德, 张伯桥. 扬麦系列品种(系)重要性状功能基因的KASP检测. 江苏农业学报, 2019, 35: 1271-1283.
Wang J C, Wu X J, Hu W J, Zhang X, Zhang Y, Gao D R, Bie T D, Zhang B Q. Kompetitive allele specific PCR(KASP) assays for functional genes of important trait in Yangmai series wheat cultivars (lines). Jiangsu J Agric Sci, 2019, 35: 1271-1283 (in Chinese with English abstract).
[12] 姜朋, 张鹏, 姚金保, 吴磊, 何漪, 李畅, 马鸿翔, 张旭. 宁麦系列小麦品种的性状特点及相关基因位点分析. 中国农业科学, 2022, 55: 233-247.
doi: 10.3864/j.issn.0578-1752.2022.02.001
Jiang P, Zhang P, Yao J B, Wu L, He Y, Li C, Ma H X, Zhang X. Phenotypic characteristics and related gene analysis of Ningmai series wheat varieties. Sci Agric Sin, 2022, 55: 233-247 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2022.02.001
[13] 吕国锋, 别同德, 王慧, 赵仁慧, 范金平, 张伯桥, 吴素兰, 王玲, 汪尊杰, 高德荣. 长江下游麦区新育成品种(系) 3种主要病害的抗性鉴定及抗病基因/QTL的分子检测. 作物学报, 2021, 47: 2335-2347.
doi: 10.3724/SP.J.1006.2021.01097
Lyu G F, Bie T D, Wang H, Zhao R H, Fan J P, Zhang B Q, Wu S L, Wang L, Wang Z J, Gao D R. Evaluation and molecular detection of three major diseases resistance of new bred wheat varieties (lines) from the lower reaches of the Yangtze River. Acta Agron Sin, 2021, 47: 2335-2347 (in Chinese with English abstract).
[14] 张晓, 江伟, 高德荣, 郭延玲, 刘大同, 蒋正宁, 李曼, 刘健, 袁博, 陆成彬. 94份小麦种质Puroindoline和HMW-GS分子检测与品质分析. 植物遗传资源学报, 2024, 25: 509-521.
doi: 10.13430/j.cnki.jpgr.20230905002
Zhang X, Jiang W, Gao D R, Guo Y L, Liu D T, Jiang Z N, Li M, Liu J, Yuan B, Lu C B. Molecular detection of Puroindoline and HMW-GS and quality traits analysis in 94 wheat germplasms. J Plant Genet Resour, 2024, 25: 509-521 (in Chinese with English abstract).
[15] 朱冬梅, 王慧, 刘大同, 高德荣, 吕国锋, 王君婵, 高致富, 陆成彬. 小麦籽粒灌浆与脱水特性. 中国农业科学, 2019, 52: 4251-4261.
doi: 10.3864/j.issn.0578-1752.2019.23.006
Zhu D M, Wang H, Liu D T, Gao D R, Lyu G F, Wang J C, Gao Z F, Lu C B. Characteristics of grain filling and dehydration in wheat. Sci Agric Sin, 2019, 52: 4251-4261 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2019.23.006
[1] 刘志勇, 王道文, 张爱民, 梁翰文, 吕慧颖, 邓向东, 葛毅强, 魏珣, 杨维才. 小麦育种行业创新现状与发展趋势. 植物遗传资源学报, 2018, 19: 430-434.
doi: 10.13430/j.cnki.jpgr.2018.03.007
Liu Z Y, Wang D W, Zhang A M, Liang H W, Lyu H Y, Deng X D, Ge Y Q, Wei X, Yang W C. Current status and perspective of wheat genomics, genetics, and breeding. J Plant Genet Resour, 2018, 19: 430-434 (in Chinese with English abstract).
[2] 刘易科, 朱展望, 陈泠, 邹娟, 佟汉文, 朱光, 何伟杰, 张宇庆, 高春保. 基于SNP标记揭示我国小麦品种(系)的遗传多样性. 作物学报, 2020, 46: 307-314.
doi: 10.3724/SP.J.1006.2020.91039
Liu Y K, Zhu Z W, Chen L, Zou J, Tong H W, Zhu G, He W J, Zhang Y Q, Gao C B. Revealing the genetic diversity of wheat varieties (lines) in China based on SNP markers. Acta Agron Sin, 2020, 46: 307-314 (in Chinese with English abstract).
[3] 喻俊杰, 金艳, 张勇, 徐辰武. 江苏主栽小麦品种遗传多样性的SSR分析. 麦类作物学报, 2015, 35: 1372-1377.
Yu J J, Jin Y, Zhang Y, Xu C W. Analysis on genetic diversity of Jiangsu wheat cultivars using SSR markers. J Triticeae Crops, 2015, 35: 1372-1377 (in Chinese with English abstract).
[4] 任勇, 李生荣, 罗建明, 何中虎, 杜小英, 周强, 何员江, 魏育明, 郑有良. 绵麦37特异位点在其衍生品种中的遗传贡献率分析. 遗传, 2014, 36: 145-151.
Ren Y, Li S R, Luo J M, He Z H, Du X Y, Zhou Q, He Y J, Wei Y M, Zheng Y L. Frequency and contribution of specific genetic loci transferred from wheat cultivar Mianmai 37 to its derivatives. Hereditas (Beijing), 2014, 36: 145-151 (in Chinese with English abstract).
[5] 李俊, 万洪深, 杨武云, 王琴, 朱欣果, 胡晓蓉, 魏会廷, 汤永禄, 李朝苏, 彭正松, 等. 小麦新品种川麦104的遗传构成分析. 中国农业科学, 2014, 47: 2281-2291.
doi: 10.3864/j.issn.0578-1752.2014.12.001
[16] 张晓, 李曼, 刘大同, 江伟, 张勇, 高德荣. 扬麦系列品种品质性状分析及育种启示. 中国农业科学, 2020, 53: 1309-1321.
doi: 10.3864/j.issn.0578-1752.2020.07.002
Zhang X, Li M, Liu D T, Jiang W, Zhang Y, Gao D R. Analysis of quality traits and breeding inspiration in Yangmai series wheat varieties. Sci Agric Sin, 2020, 53: 1309-1321 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2020.07.002
[17] Somers D J, Fedak G, Savard M. Molecular mapping of novel genes controlling Fusarium head blight resistance and deoxynivalenol accumulation in spring wheat. Genome, 2003, 46: 555-564.
doi: 10.1139/g03-033 pmid: 12897863
[18] Xiao J, Chen X L, Xu Z T, Guo J, Wu Z Z, Wang H Y, Zhu X B, Nie M J, Bie T D, Cheng S H, et al. Validation and diagnostic marker development for a genetic region associated with wheat yellow mosaic virus resistance. Euphytica, 2016, 211: 91-101.
[19] Zhu X B, Wang H Y, Guo J, Wu Z Z, Cao A Z, Bie T D, Nie M J, You F M, Cheng Z B, Xiao J, et al. Mapping and validation of quantitative trait loci associated with wheat yellow mosaic bymovirus resistance in bread wheat. Theor Appl Genet, 2012, 124: 177-188.
doi: 10.1007/s00122-011-1696-3 pmid: 21959905
[20] 李玉刚, 任民, 孙绿, 王圣健, 韩梅, 李振清, 翟晓灵, 代小雁, 侯元江, 盖红梅. 利用SSR和SNP标记分析鲁麦14对青农2号的遗传贡献. 作物学报, 2018, 44: 159-168.
doi: 10.3724/SP.J.1006.2018.00159
Li Y G, Ren M, Sun L, Wang S J, Han M, Li Z Q, Zhai X L, Dai X Y, Hou Y J, Ge H M. Genetic contribution of Lumai 14 to Qingnong 2 revealed by SSR and SNP markers. Acta Agron Sin, 2018, 44: 159-168 (in Chinese with English abstract).
[21] 别同德, 高德荣, 张晓, 庄丽芳, 赵仁慧, 陈甜甜, 张伯桥. 基于高代姊妹系组群研究小麦-簇毛麦染色体T6VS.6AL易位的遗传效应. 江苏农业学报, 2015, 31: 1206-1210.
Bie T D, Gao D R, Zhang X, Zhuang L F, Zhao R H, Chen T T, Zhang B Q. Genetic effects of wheat-Haynaldia Villosa chromosome T6VS.6AL translocation based on advanced sib-line groups. Jiangsu J Agric Sci, 2015, 31: 1206-1210 (in Chinese with English abstract).
[22] 许琦, 杨娜, 柴永峰, 杨淑巧, 赵智勇, 裴蕾, 郭文治, 刘跃鹏. 中国小麦主要矮秆基因的分布及其对株高的影响. 西北农业学报, 2014, 23: 59-64.
Xu Q, Yang N, Chai Y F, Yang S Q, Zhao Z Y, Pei L, Guo W Z, Liu Y P. Distribution and impact on plant height of major wheat dwarfing genes in China. Acta Agric Boreali-Occident Sin, 2014, 23: 59-64 (in Chinese with English abstract).
[23] 杨松杰, 张晓科, 何中虎, 夏先春, 周阳. 用STS标记检测矮秆基因Rht-B1bRht-D1b在中国小麦中的分布. 中国农业科学, 2006, 39: 1680-1688.
Yang S J, Zhang X K, He Z H, Xia X C, Zhou Y. Distribution of dwarfing genes Rht-B1b and Rht-D1b in Chinese bread wheats detected by STS marker. Sci Agric Sin, 2006, 39: 1680-1688 (in Chinese with English abstract).
[24] Srinivasachary S, Gosman N, Steed A, Hollins T W, Bayles R, Jennings P, Nicholson P. Semi-dwarfing Rht-B1 and Rht-D1loci of wheat differ significantly in their influence on resistance to Fusarium head blight. Theor Appl Genet, 2009, 118: 695-702.
doi: 10.1007/s00122-008-0930-0 pmid: 19034409
[25] 徐晴, 许甫超, 秦丹丹, 彭严春, 朱展望, 董静. 矮秆基因在中国不同麦区小麦品种中的分布及其对赤霉病抗性的影响. 麦类作物学报, 2022, 42: 790-798.
Xu Q, Xu F C, Qin D D, Peng Y C, Zhu Z W, Dong J. Distribution of the wheat dwarfing genes in China and their effects on Fusarium head blight resistance. J Triticeae Crops, 2022, 42: 790-798 (in Chinese with English abstract).
[26] Pang Y L, Liu C X, Wang D F, St Amand P, Bernardo A, Li W H, He F, Li L Z, Wang L M, Yuan X F, et al. High-resolution genome-wide association study identifies genomic regions and candidate genes for important agronomic traits in wheat. Mol Plant, 2020, 13: 1311-1327.
doi: S1674-2052(20)30221-5 pmid: 32702458
[27] 周阳, 何中虎, 张改生, 夏兰琴, 陈新民, 高永超, 井赵斌, 于广军. 1BL/1RS易位系在我国小麦育种中的应用. 作物学报, 2004, 30: 531-535.
Zhou Y, He Z H, Zhang G S, Xia L Q, Chen X M, Gao Y C, Jing Z B, Yu G J. Utilization of 1BL/1RS translocation in wheat breeding in China. Acta Agron Sin, 2004, 30: 531-535 (in Chinese with English abstract).
[28] 刘成, 韩冉, 汪晓璐, 宫文萍, 程敦公, 曹新有, 刘爱峰, 李豪圣, 刘建军. 小麦远缘杂交现状、抗病基因转移及利用研究进展. 中国农业科学, 2020, 53: 1287-1308.
doi: 10.3864/j.issn.0578-1752.2020.07.001
Liu C, Han R, Wang X L, Gong W P, Cheng D G, Cao X Y, Liu A F, Li H S, Liu J J. Research progress of wheat wild hybridization, disease resistance genes transfer and utilization. Sci Agric Sin, 2020, 53: 1287-1308 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2020.07.001
[29] Villareal R L, Bañuelos O, Mujeeb-Kazi A, Rajaram S.Agronomic performance of chromosomes 1B and T1BL.1RS near isolines in the spring bread wheat Seri M82. Euphytica, 1998, 103: 195-202.
[30] Zhao C H, Cui F, Wang X Q, Shan S C, Li X F, Bao Y G, Wang H G. Effects of 1BL/1RS translocation in wheat on agronomic performance and quality characteristics. Field Crops Res, 2012, 127: 79-84.
[31] Sukumaran S, Dreisigacker S, Lopes M, Chavez P, Reynolds M P. Genome-wide association study for grain yield and related traits in an elite spring wheat population grown in temperate irrigated environments. Theor Appl Genet, 2015, 128: 353-363.
doi: 10.1007/s00122-014-2435-3 pmid: 25490985
[32] Moreno-Sevilla B, Baenziger P S, Peterson C J, Graybosch R A, McVey D V. The 1BL/1RS translocation: agronomic performance of F3-derived lines from a winter wheat cross. Crop Sci, 1995, 35: 1051-1055.
[33] Ehdaie B, Layne A P, Waines J G. Root system plasticity to drought influences grain yield in bread wheat. Euphytica, 2012, 186: 219-232.
[34] 张平平, 马鸿翔, 姚金保, 周淼平, 杨学明, 张鹏, 杨丹. 江苏省小麦品种的谷蛋白亚基组成分析. 江苏农业学报, 2014, 30: 959-965.
Zhang P P, Ma H X, Yao J B, Zhou M P, Yang X M, Zhang P, Yang D. Subunit composition of glutenin in common wheat of Jiangsu province. Jiangsu J Agric Sci, 2014, 30: 959-965 (in Chinese with English abstract).
[35] 刘建军, 何中虎, Pena R J, 赵振东. 1BL/1RS易位对小麦加工品质的影响. 作物学报, 2004, 30: 149-153.
Liu J J, He Z H, Pena R J, Zhao Z D. Effect of 1BL/1RS translocation on grain quality and noodle quality in bread wheat. Acta Agron Sin, 2004, 30: 149-153 (in Chinese with English abstract).
[36] 刘丽, 阎俊, 张艳, 何中虎, Pena R J, 张立平. 冬播麦区Glu-1Glu-3位点变异及1B/1R易位与小麦加工品质性状的关系. 中国农业科学, 2005, 38: 1944-1950.
Liu L, Yan J, Zhang Y, He Z H, Pena R J, Zhang L P. Allelic variation at the Glu-1 and Glu-3 Loci and presence of 1B/1R translocation, and their effects on processing quality in cultivars and advanced lines from autumn-sown wheat regions in China. Sci Agric Sin, 2005, 38: 1944-1950 (in Chinese with English abstract).
[37] Ma F Y, Li M, Yu L L, Li Y, Liu Y Y, Li T T, Liu W, Wang H W, Zheng Q, Li K X, et al. Transformation of common wheat (Triticum aestivum L.) with avenin-like b gene improves flour mixing properties. Mol Breed, 2013, 32: 853-865.
[38] 张晓, 张伯桥, 江伟, 吕国锋, 张晓祥, 李曼, 高德荣. 扬麦系列品种品质性状相关基因的分子检测. 中国农业科学, 2015, 48: 3779-3793.
doi: 10.3864/j.issn.0578-1752.2015.19.001
Zhang X, Zhang B Q, Jiang W, Lyu G F, Zhang X X, Li M, Gao D R. Molecular detection for quality traits-related genes in Yangmai series wheat cultivars. Sci Agric Sin, 2015, 48: 3779-3793 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2015.19.001
[1] 孟祥宇, 刁邓超, 刘雅睿, 李云丽, 孙玉晨, 吴玮, 赵雯, 汪妤, 吴建辉, 李春莲, 曾庆东, 韩德俊, 郑炜君. 小麦新品种西农877高产稳产的遗传特性解析[J]. 作物学报, 2025, 51(5): 1261-1276.
[2] 田春艳, 边芯, 郎荣斌, 俞华先, 桃联安, 安汝东, 董立华, 张钰, 经艳芬. 甘蔗3个育种性状与SSR标记的关联分析及优异等位变异发掘[J]. 作物学报, 2024, 50(2): 310-324.
[3] 丁永刚, 陈立, 董金鑫, 朱敏, 李春燕, 朱新开, 丁锦峰, 郭文善. 高产高效型半冬性小麦品种的产量构成、氮素积累转运和籽粒品质特征分析[J]. 作物学报, 2022, 48(12): 3144-3154.
[4] 习玲, 王昱琦, 朱微, 王益, 陈国跃, 蒲宗君, 周永红, 康厚扬. 78份四川小麦育成品种(系)条锈病抗性鉴定与抗条锈病基因分子检测[J]. 作物学报, 2021, 47(7): 1309-1323.
[5] 吕丽华,梁双波,张丽华,贾秀领,董志强,姚艳荣. 不同小麦品种产量对冬前积温变化的响应[J]. 作物学报, 2016, 42(01): 149-156.
[6] 曹廷杰,陈永兴,李丹,张艳,王西成,赵虹,刘志勇. 河南小麦新育成品种(系)白粉病抗性鉴定与分子标记检测[J]. 作物学报, 2015, 41(08): 1172-1182.
[7] 游光霞,孙果忠,张秀英,肖世和. 中国黄淮海地区小麦品种抗寒性及其与VRN1基因型的关系[J]. 作物学报, 2015, 41(04): 557-564.
[8] 曹廷杰,谢菁忠,吴秋红,陈永兴,王振忠,赵虹,王西成,詹克慧,徐如强,王际睿,罗明成,刘志勇. 河南省近年审定小麦品种基于系谱和SNP标记的遗传多样性分析[J]. 作物学报, 2015, 41(02): 197-206.
[9] 李媛媛, 陈庆芳, 傅廷栋, 马朝芝. 利用SSCP技术分析甘蓝型油菜10个功能基因序列差异[J]. 作物学报, 2012, 38(01): 43-49.
[10] 梁强, 张晓科, 尉倩, 王晓龙, 张晶, 孙道杰, 付晓洁. 强筋小麦分子标记多重PCR体系的构建与应用[J]. 作物学报, 2011, 37(11): 1942-1948.
[11] 王立新,李宏博,廖琴,邱军,常利芳,刘丽华,任立平,高新欢,赵昌平. 利用分子标记筛查小麦相似品种(系)[J]. 作物学报, 2010, 36(09): 1490-1497.
[12] 韩俊,张连松,李静婷,石丽娟,解超杰,尤明山,杨作民,刘广田,孙其信,刘志勇. 小麦骨干亲本“胜利麦/燕大1817”杂交组合后代衍生品种遗传构成解析[J]. 作物学报, 2009, 35(8): 1395-1404.
[13] 马雅琴;翁跃进. 引进春小麦种质耐盐性的鉴定评价[J]. 作物学报, 2005, 31(01): 58-64.
[14] 张祖新;张方东;郑用琏. 功能基因组学及其研究方法[J]. 作物学报, 2003, 29(02): 194-201.
[15] 刘建军;何中虎;赵振东;刘爱峰;宋建民;R J Pena. 小麦品质性状与干白面条品质参数关系的研究[J]. 作物学报, 2002, 28(06): 738-742.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!