欢迎访问作物学报,今天是

作物学报 ›› 2025, Vol. 51 ›› Issue (6): 1548-1557.doi: 10.3724/SP.J.1006.2025.41095

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

小麦小旗叶突变性状基因定位与遗传分析

杨思杰1(), 杜启迪2, 柴守玺1, 熊宏春2, 谢永盾2, 赵林姝2, 古佳玉2, 郭会君1,2,*(), 刘录祥2,*()   

  1. 1甘肃农业大学农学院, 甘肃兰州 730070
    2中国农业科学院作物科学研究所/作物基因资源与育种全国重点实验室/作物分子育种国家工程实验室/CAEA核技术(辐射育种)研发中心, 北京 100081
  • 收稿日期:2024-12-24 接受日期:2025-03-26 出版日期:2025-06-12 网络出版日期:2025-04-02
  • 通讯作者: *郭会君, E-mail: guohuijun@caas.cn;刘录祥, E-mail: liuluxiang@caas.cn
  • 作者简介:E-mail: yangsijiej@163.com
  • 基金资助:
    本研究由国家重点研发计划项目(2022YFD1200700);财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-03)

Genetic mapping of mutant genes on flag leaf length and width in wheat

YANG Si-Jie1(), DU Qi-Di2, CHAI Shou-Xi1, XIONG Hong-Chun2, XIE Yong-Dun2, ZHAO Lin-Shu2, GU Jia-Yu2, GUO Hui-Jun1,2,*(), LIU Lu-Xiang2,*()   

  1. 1College of Agronomy, Gansu Agricultural University, Lanzhou 730070, Gansu, China
    2Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / State Key Laboratory of Crop Gene Resources and Breeding / National Engineering Laboratory of Crop Molecular Breeding / CAEA Research and Development Centre on Nuclear Technology Applications for Irradiation Mutation Breeding, Beijing 100081, China
  • Received:2024-12-24 Accepted:2025-03-26 Published:2025-06-12 Published online:2025-04-02
  • Contact: *E-mail: guohuijun@caas.cn;E-mail: liuluxiang@caas.cn
  • Supported by:
    the National Key Research and Development Program(2022YFD1200700);the China Agriculture Research System of MOF and MARA(CARS-03)

摘要:

叶片形态作为株型结构的核心特征, 对光合作用效率、作物产量及胁迫响应等具有重要影响。旗叶是小麦进行光合作用的重要功能器官, 其光合效率直接影响小麦产量, 深入挖掘旗叶发育调控基因有助于培育高产小麦品种。本研究以小麦品种京411为野生型, 经诱变获得了表型稳定的小旗叶突变体je0261。该突变体表现旗叶变窄变短, 旗叶叶长减小38.9%, 叶宽减少29.3%, 叶面积减小56.7%。根据突变体与野生型的F2和F3代表型数据分析表明, 旗叶宽窄和长短性状分别受1对主效隐性基因控制。采用混合群体分离分析法(BSA), 结合测序所得SNP位点, 在7A染色体上开发了7个KASP标记, 将控制叶长、叶宽的目标基因同时定位在7A染色体长臂1.18 cM遗传区段内, 对应中国春参考基因组8.08 Mb的物理区间。2个基因之间的遗传距离为1.00 cM, 推断是2个新的控制旗叶宽度和长度的主效基因。本研究所鉴定的小麦旗叶大小和宽窄调控区段有助于深入解析小麦旗叶叶面积形成的遗传基础, 为进一步改良小麦叶型提供新基因源。

关键词: 小麦, 旗叶叶长, 旗叶叶宽, 遗传分析, 基因定位

Abstract:

Leaf morphology is a key determinant of plant architecture, influencing photosynthetic efficiency, yield, and stress responses. In wheat, the flag leaf serves as a critical photosynthetic organ, directly impacting grain yield and quality. Identifying novel genes and alleles associated with flag leaf traits can facilitate high-yield wheat breeding. In this study, we used the wheat variety Jing 411 as the wild type and developed a stable mutant, je0261, which exhibited a significantly reduced flag leaf area. Compared to Jing 411, the mutant had a 38.9% shorter, 29.3% narrower, and 56.7% smaller flag leaf. Analysis of segregation ratios for flag leaf length and width in the F2 and F3 populations derived from Jing 411 × je0261 indicated that these traits were each controlled by a single recessive gene. Using bulked segregant analysis (BSA) combined with exome capture sequencing, we mapped the target genes to chromosome 7A. Seven KASP markers were developed within the target region, and the genes controlling flag leaf length and width were mapped to a 1.18 cM genetic interval, corresponding to an 8.08 Mb physical region in the Chinese Spring reference genome. The genetic distance between these two genes was 1.00 cM, suggesting that they are two distinct, novel genes regulating flag leaf length and width. The identification of this candidate interval enhances our understanding of the genetic basis of flag leaf area in wheat and provides valuable mutant gene resources for future wheat architecture improvement.

Key words: wheat, flag leaf length, flag leaf width, genetic analysis, gene mapping

图1

突变体je0261与野生型表型比较 A: 植株表型, 标尺为10 cm; B: 抽穗期叶片, 标尺为5 cm; C: 旗叶叶长; D: 旗叶叶宽; E: 旗叶叶面积; F、G: 粒长, 标尺为0.5 cm; H、J: 粒宽, 标尺为0.5 cm; I: 千粒重。**表示在P < 0.01水平差异显著。"

图2

突变体旗叶中部横切面组织结构 A: 抽穗期旗叶中部横切面; B: 表皮细胞数量; C: 表皮细胞宽度; D: 大叶脉数量; E: 小叶脉数量; F: 大维管束数量; G: 小维管束数量。**表示在P < 0.01水平差异显著; ns表示差异不显著。"

表S1

京411×je0261 F2分离群体中旗叶宽度和长度重组率统计"

世代
Generation
表型
Phenotype
观察值
Observed count (O)
重组率
Recombination rate (E)
F2 长宽Long and wide 405 63.5%
短宽Short and wide 65 10.2%
长窄Long and narrow 76 11.9%
短窄Short and narrow 92 14.4%
合计Total 638

附图1

京411×je0261分离群体旗叶代表性图片及统计株数 A: 分离群体中的4种旗叶类型, 标尺为2 cm; B: 不同旗叶表型的株数统计。LW: 长宽旗叶, SW: 短宽旗叶, LN: 长窄旗叶, SN: 短窄旗叶。"

表1

京411 × je0261的F2和F3群体中旗叶宽窄性状卡方分析"

世代
Generation
表型
Phenotype
观察值
Observed count
(O)
期望值
Expected count
(E)
(O-E)2 /E χ2 P (df=1)
F2 窄旗叶Narrow flag leaf 168 160 0.40 0.51 0.608
宽旗叶Wide flag leaf 470 478 0.13
合计 Total 638 638
F3 窄旗叶Narrow flag leaf 151 160 0.51 0.68 0.557
宽旗叶Wide flag leaf 487 478 0.17
合计 Total 638 638

表2

京411 × je0261的F2和F3群体中旗叶长短性状卡方分析"

世代
Generation
表型
Phenotype
观察值
Observed count
(O)
期望值
Expected count
(E)
(O-E)2 /E χ2 P (df=1)
F2 短旗叶Short flag leaf 157 160 0.06 0.08 0.846
长旗叶Long flag leaf 481 478 0.02
合计 Total 638 638
F3 短旗叶Short flag leaf 154 160 0.23 0.30 0.696
长旗叶Long flag leaf 484 478 0.08
合计 Total 638 638

图3

控制小麦旗叶长宽的主效基因均定位于7A染色体上 A: 旗叶宽度ED关联分析图; B: 旗叶长度ED关联分析图。ED4表示欧几里得距离的四次方。"

图4

旗叶叶长和叶宽在7A染色体上的定位区间 红线表示以旗叶叶宽为表型检测到的LOD曲线, 绿线表示以旗叶叶长为表型检测到的LOD曲线。FLL: 旗叶叶长; FLW: 旗叶叶宽。"

[1] 赵广才, 常旭虹, 王德梅, 陶志强, 王艳杰, 杨玉双, 朱英杰. 小麦生产概况及其发展. 作物杂志, 2018, (4): 1-7.
Zhao G C, Chang X H, Wang D M, Tao Z Q, Wang Y J, Yang Y S, Zhu Y J. General situation and development of wheat production. Crops, 2018, (4): 1-7 (in Chinese with English abstract).
[2] 李宇星, 马亮亮, 张月, 秦博雅, 张文静, 马尚宇, 黄正来, 樊永惠. 外源海藻糖对灌浆期高温胁迫下小麦旗叶生理特性和产量的影响. 作物学报, 2023, 49: 2210-2224.
doi: 10.3724/SP.J.1006.2023.21057
Li Y X, Ma L L, Zhang Y, Qin B Y, Zhang W J, Ma Shang Y, Huang Z L, Fan Y H. Effects of exogenous trehalose on physiological characteristics and yield of wheat flag leaves under high temperature stress at grain filling stage. Acta Agron Sin, 2023, 49: 2210-2224 (in Chinese with English abstract).
[3] 陈天鑫, 王艳杰, 张燕, 常旭虹, 陶志强, 王德梅, 杨玉双, 朱英杰, 刘阿康, 石书兵, 等. 不同施氮量对冬小麦光合生理指标及产量的影响. 作物杂志, 2020, (2): 88-96.
Chen T X, Wang Y J, Zhang Y, Chang X H, Tao Z Q, Wang D M, Yang Y S, Zhu Y J, Liu A K, Shi S B, et al. Effects of different nitrogen rates on photosynthetic and physiological indexes and yield of winter wheat. Crops, 2020, (2): 88-96 (in Chinese with English abstract).
[4] 郭翠花, 高志强, 苗果园. 花后遮阴对小麦旗叶光合特性及籽粒产量和品质的影响. 作物学报, 2010, 36: 673-679.
doi: 10.3724/SP.J.1006.2010.00673
Guo C H, Gao Z Q, Miao G Y. Effect of shading at post flowering on photosynthetic characteristics of flag leaf and response of grain yield and quality to shading in wheat. Acta Agron Sin, 2010, 36: 673-679 (in Chinese with English abstract).
[5] 张元帅, 冯伟, 张海艳, 齐双丽, 衡亚蓉, 郭彬彬, 李晓, 王永华, 郭天财. 遮阴和施氮对冬小麦旗叶光合特性及产量的影响. 中国生态农业学报, 2016, 24: 1177-1184.
Zhang Y S, Feng W, Zhang H Y, Qi S L, Heng Y R, Guo B B, Li X, Wang Y H, Guo T C. Effects of shading and nitrogen rate on photosynthetic characteristics of flag leaves and yield of winter wheat. Chin J Eco-Agric, 2016, 24: 1177-1184 (in Chinese with English abstract).
[6] 傅兆麟, 马宝珍, 王光杰, 赵玉华, 李广科. 小麦旗叶与穗粒重关系的研究. 麦类作物学报, 2001, 21(1): 92-94.
Fu Z L, Ma B Z, Wang G J, Zhao Y H, Li G K. Relationship between the flag leaf and the grain weight per spike in wheat. J Triticeae Crops, 2001, 21(1): 92-94 (in Chinese with English abstract).
[7] 曹英杰, 杨剑飞, 王宇. 全基因组关联分析在作物育种研究中的应用. 核农学报, 2019, 33: 1508-1518.
doi: 10.11869/j.issn.100-8551.2019.08.1508
Cao Y J, Yang J F, Wang Y. The application of GWAS in crop breeding. J Nucl Agric Sci, 2019, 33: 1508-1518 (in Chinese with English abstract).
doi: 10.11869/j.issn.100-8551.2019.08.1508
[8] 宋茂兴, 陆晴, 马宏亮, 甄志华, 梁利娜, 吴志会. 小麦旗叶面积相关性状的全基因组关联分析. 种子, 2023, 42(10): 123-128.
Song M X, Lu Q, Ma H L, Zhen Z H, Liang L N, Wu Z H. Genome-wide association analysis of flag leaf area related traits in wheat. Seed, 2023, 42(10): 123-128 (in Chinese with English abstract).
[9] Tu Y, Liu H, Liu J J, Tang H P, Mu Y, Deng M, Jiang Q T, Liu Y X, Chen G Y, Wang J R, et al. QTL mapping and validation of bread wheat flag leaf morphology across multiple environments in different genetic backgrounds. Theor Appl Genet, 2021, 134: 261-278.
doi: 10.1007/s00122-020-03695-w pmid: 33026461
[10] 李法计.基于全基因组关联分析的小麦产量遗传结构解析. 新疆农业大学博士学位论文,新疆乌鲁木齐, 2018.
Li F J.Genetic Structure Analysis of Wheat Yield Based on Genome-wide Association Study. PhD Dissertation of Xinjiang Agricultural University, Urumqi, Xinjiang, China, 2018 (in Chinese with English abstract).
[11] 曹廷杰, 周艳杰, 杨剑, 张玉娥, 胡卫国, 王西成, 赵虹. 河南省审定小麦品种旗叶性状全基因组关联分析. 江苏农业科学, 2022, 50(11): 53-62.
Cao Y J, Zhou Y J, Yang J, Zhang Y E, Hu W G, Wang X C, Zhao H. Genome-wide association analysis of flag leaf traits of registered wheat cultivars in Henan province. Jiangsu Agric Sci, 2022, 50(11): 53-62 (in Chinese with English abstract).
[12] 高旭, 程斌, 丁延庆, 陈天青, 徐建霞, 曹宁, 张立异. 利用55K芯片进行小麦旗叶相关性状的QTL定位. 分子植物育种, 网络首发 [2022-12-08], https://kns.cnki.net/kcms/detail//46.1068.S.20221207.1522.002.html. .
Gao X, Cheng B, Ding Y Q, Chen T Q, Xu J X, Cao N, Zhang L Y. QTL mapping of flag leaf-related traits in wheat using 55K SNP chip. Mol Plant Breed, Published online, [2022-12-08], https://kns.cnki.net/kcms/detail//46.1068.S.20221207.1522.002.html. (in Chinese with English abstract).
[13] Paux E, Roger D, Badaeva E, Gay G, Bernard M, Sourdille P, Feuillet C. Characterizing the composition and evolution of homoeologous genomes in hexaploid wheat through BAC-end sequencing on chromosome 3B. Plant J, 2006, 48: 463-474.
doi: 10.1111/j.1365-313X.2006.02891.x pmid: 17010109
[14] Qi J, Qian Q, Bu Q Y, Li S Y, Chen Q, Sun J Q, Liang W X, Zhou Y H, Chu C C, Li X G, et al. Mutation of the rice Narrow leaf1 gene, which encodes a novel protein, affects vein patterning and polar auxin transport. Plant Physiol, 2008, 147: 1947-1959.
[15] Zhang G H, Xu Q, Zhu X D, Qian Q, Xue H W. SHALLOT- LIKE1 is a KANADI transcription factor that modulates rice leaf rolling by regulating leaf abaxial cell development. Plant Cell, 2009, 21: 719-735.
[16] Xue S L, Xu F, Li G Q, Zhou Y, Lin M S, Gao Z X, Su X H, Xu X W, Jiang G, Zhang S, et al. Fine mapping TaFLW1, a major QTL controlling flag leaf width in bread wheat (Triticum aestivum L.). Theor Appl Genet, 2013, 126: 1941-1949.
[17] Zhao C H, Liu X J, Liu H W, Kong W C, Zhao Z C, Zhang S R, Wang S N, Chen Y Z, Wu Y Z, Sun H, et al. Fine mapping of QFlw-5B, a major QTL for flag leaf width in common wheat (Triticum aestivum L.). Theor Appl Genet, 2022, 135: 2531-2541.
[18] Wang K, Shi L, Liang X N, Zhao P, Wang W X, Liu J X, Chang Y N, Hiei Y, Yanagihara C, Du L P, et al. The gene TaWOX5 overcomes genotype dependency in wheat genetic transformation. Nat Plants, 2022, 8: 110-117.
doi: 10.1038/s41477-021-01085-8 pmid: 35027699
[19] Du D J, Li Z J, Yuan J, He F, Li X T, Wang N J, Li R H, Ke W S, Zhang D X, Chen Z Y, et al. The TaWAK2-TaNAL1-TaDST pathway regulates leaf width via cytokinin signaling in wheat. Sci Adv, 2024, 10: eadp5541.
[20] 杜德杰, 袁俊, 王梓豪, 宋婉君, 孙其信, 倪中福. 小麦窄叶基因Ta-nal1的精细定位和候选基因克隆. 第九届全国小麦基因组学及分子育种大会论文集, 2018.
Du D J, Yuan J, Wang Z H, Song W J, Sun Q X, Ni Z F. Fine mapping and candidate gene cloning of Ta-nal1 on wheat narrow-leaf. The Proceedings of the 9th National Conference on Wheat Genomics and Molecular Breeding, 2018 (in Chinese).
[21] Huang L, Gan M J, Zhao W Z, Hu Y L, Du L L, Li Y Q, Zeng K H, Wu D D, Hao M, Ning S Z, et al. Characterization and mapping of a rolling leaf mutant allele rlT73 on chromosome 1BL of wheat. Int J Mol Sci, 2024, 25: 4103.
[22] Jordan K W, Wang S C, Lun Y N, Gardiner L J, MacLachlan R, Hucl P, Wiebe K, Wong D, Forrest K L, Consortium I W G S, et al. A haplotype map of allohexaploid wheat reveals distinct patterns of selection on homoeologous genomes. Genome Biol, 2015, 16: 48.
doi: 10.1186/s13059-015-0606-4 pmid: 25886949
[23] Zou C, Wang P X, Xu Y B. Bulked sample analysis in genetics, genomics and crop improvement. Plant Biotechnol J, 2016, 14: 1941-1955.
doi: 10.1111/pbi.12559 pmid: 26990124
[24] King R, Bird N, Ramirez-Gonzalez R, Coghill J A, Patil A, Hassani-Pak K, Uauy C, Phillips A L. Mutation scanning in wheat by exon capture and next-generation sequencing. PLoS One, 2015, 10: e0137549.
[25] Yao Z, You F M, N’Diaye A, Knox R E, McCartney C, Hiebert C W, Pozniak C, Xu W. Evaluation of variant calling tools for large plant genome re-sequencing. BMC Bioinf, 2020, 21: 360.
[26] Hill J T, Demarest B L, Bisgrove B W, Gorsi B, Su Y C, Joseph Yost H. MMAPPR: mutation mapping analysis pipeline for pooled RNA-seq. Genome Res, 2013, 23: 687-697.
doi: 10.1101/gr.146936.112 pmid: 23299975
[27] 张顺麟. 冬小麦淀粉合成关键基因TaSSIVb特性分析与等位变异挖掘. 中国农业科学院硕士学位论文, 北京, 2019.
Zhang S L. Characteristic Analysis and Allelic Variation Mining of TaSSIVb, A Key Gene for Starch Synthesis in Winter Wheat. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2019 (in Chinese with English abstract).
[28] Meng L, Li H H, Zhang L Y, Wang J K. QTL IciMapping: integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J, 2015, 3: 269-283.
doi: 10.1016/j.cj.2015.01.001
[29] 王新靓, 卢杰. 植物叶片解剖结构与光合作用研究概况. 农业与技术, 2023, 43(16): 78-82.
Wang X L, Lu J. Overview of the anatomical structure of plant leaves and photosynthesis research. J Agric Technol, 2023, 43(16): 78-82 (in Chinese).
[30] 张禾, 李磊. 调控植物叶片内在大小的分子机制. 自然杂志, 2021, 43(2): 96-104.
Zhang H, Li L. Molecular regulating mechanism of leaf area. Chin J Nat, 2021, 43(2): 96-104 (in Chinese with English abstract).
[31] Yoon H, Shim Y, Yoo S C, Kang K, Paek N C. The rice CHD3/ mi-2 chromatin remodeling factor rolled fine striped promotes flowering independent of photoperiod. Int J Mol Sci, 2021, 22: 1303.
[32] 张全国, 贾秀领, 马瑞昆. 基因型和供水对小麦维管系统发育的效应. 华北农学报, 2001, 16(4): 65-70.
doi: 10.3321/j.issn:1000-7091.2001.04.014
Zhang Q G, Jia X L, Ma R K. Effect of genotype and water supply on development of wheat vascular system. Acta Agric Boreali-Sin, 2001, 16(4): 65-70 (in Chinese with English abstract).
doi: 10.3321/j.issn:1000-7091.2001.04.014
[33] 梅方竹, 周广生. 小麦维管解剖结构与穗粒重关系的研究. 华中农业大学学报, 2001, 20(2): 107-113.
Mei F Z, Zhou G S. Studies on the relation of the number of spikers and sections of vascular bundle of wheat varieties (strains). J Huazhong Agric Univ, 2001, 20(2): 107-113 (in Chinese with English abstract).
[34] 潘学燕, 苗芳. 小麦维管组织结构研究概况. 中国农学通报, 2005, 21(9): 121-123.
Pan X Y, Miao F. Survey of wheat microtubule tissue structure. Chin Agric Sci Bull, 2005, 21(9): 121-123 (in Chinese with English abstract).
[35] Swift J, Luginbuehl L H, Hua L, Schreier T B, Donald R M, Stanley S, Wang N, Lee T A, Nery J R, Ecker J R, et al. Exaptation of ancestral cell-identity networks enables C4 photosynthesis. Nature, 2024, 636: 143-150.
[36] 李国辉, 张国, 崔克辉. 水稻穗颈维管束特征及其与茎鞘同化物转运和产量的关系. 植物生理学报, 2019, 55: 329-341.
Li G H, Zhang G, Cui K H. Characteristics of vascular bundles of peduncle and its relationship with translocation of stem assimilates and yield in rice. Plant Physiol J, 2019, 55: 329-341 (in Chinese with English abstract).
[37] 王芳.控制我国小麦旗叶性状的遗传位点及候选基因的功能分析. 河南农业大学硕士学位论文, 河南郑州, 2016.
Wang F. Functional Analysis of Genetic Loci and Candidate Genes Controlling Flag Leaf Traits of Wheat in China. MS Thesis of Henan Agricultural University, Zhengzhou, Henan, China, 2016 (in Chinese with English abstract).
[38] 连俊方, 张德强, 武炳瑾, 宋晓朋, 马文洁, 周丽敏, 冯毅, 孙道杰. 利用90K基因芯片进行小麦旗叶相关性状的QTL定位. 麦类作物学报, 2016, 36: 689-698.
Lian J F, Zhang D Q, Wu B J, Song X P, Ma W J, Zhou L M, Feng Y, Sun D J. QTL mapping of flag leaf traits using an integrated high-density 90K genotyping chip. J Triticeae Crops, 2016, 36: 689-698 (in Chinese with English abstract).
[39] 姚俭昕, 张传量, 宋晓朋, 许小宛, 邢永锋, 吕栋云, 宋鹏博, 杨孟于, 孙道杰. 基于90K芯片的小麦穗长和旗叶长QTL分析. 麦类作物学报, 2020, 40: 1283-1289.
Yao J X, Zhang C L, Song X P, Xu X W, Xing Y F, Lyu D Y, Song P B, Yang M Y, Sun D J. QTL analysis of wheat spike length and flag leaf length based on 90K SNP assay. J Triticeae Crops, 2020, 40: 1283-1289 (in Chinese with English abstract).
[40] 程鹏飞.不同氮水平下小麦抽穗期及叶片功能性状的全基因组关联分析. 山西农业大学硕士学位论文, 山西太谷, 2021.
Cheng P F. Genome-wide Association Study of Heading Date and Leaf Functional Traits of Wheat under Different Nitrogen Levels. MS Thesis of Shanxi Agricultural University, Taigu, Shanxi, China, 2021 (in Chinese with English abstract).
[1] 李世鹏, 陈才武, 张晶, 吕恬, 傅廷栋, 易斌. 基于改进U-Net++模型的油菜pol TCMS温敏两系育性等级鉴定及温度育性关系的量化研究[J]. 作物学报, 2025, 51(6): 1423-1434.
[2] 吕国锋, 范金平, 吴素兰, 张晓, 赵仁慧, 李曼, 王玲, 高德荣, 别同德, 刘健. 早熟小麦品种扬麦37主要目标性状的遗传构成分析[J]. 作物学报, 2025, 51(6): 1538-1547.
[3] 吴美娟, 张寅辉, 李元昊, 刘海霞, 黄以琳, 李甜, 刘红霞, 张学勇, 郝晨阳, 郭杰, 侯健. 小麦蔗糖合酶基因TaSUS2调控籽粒淀粉合成及品质的功能研究[J]. 作物学报, 2025, 51(6): 1514-1525.
[4] 袁鑫, 赵卓凡, 赵瑞清, 刘孝伟, 郑名敏, 刘育生, 董好胜, 邓丽娟, 曹墨菊, 黄强. 一份玉米小籽粒发育突变体mn-like1的遗传分析与分子鉴定[J]. 作物学报, 2025, 51(6): 1569-1581.
[5] 赵刚, 张建军, 党翼, 樊廷录, 王磊, 周刚, 王淑英, 李兴茂, 倪胜利, 米文博, 周旭姣, 程万莉, 李尚中. 黄土旱塬区秸秆覆盖量对不同降雨年型土壤水温效应和冬小麦产量的影响[J]. 作物学报, 2025, 51(6): 1643-1653.
[6] 孟祥宇, 刁邓超, 刘雅睿, 李云丽, 孙玉晨, 吴玮, 赵雯, 汪妤, 吴建辉, 李春莲, 曾庆东, 韩德俊, 郑炜君. 小麦新品种西农877高产稳产的遗传特性解析[J]. 作物学报, 2025, 51(5): 1261-1276.
[7] 王青, 王伊秀, 李越男, 吕永辉, 张海波, 刘娜, 程红艳. 高、低Cd积累小麦对Cd胁迫的转录组学响应差异[J]. 作物学报, 2025, 51(5): 1230-1247.
[8] 王佳婕, 王正楠, BATOOL Maria, 王旺年, 文静, 任长忠, 何峰, 武优悠, 徐正华, 王晶, 蒯婕, 汪波, 周广生, 傅廷栋. 油菜和小麦响应盐碱胁迫的生理特性比较[J]. 作物学报, 2025, 51(5): 1215-1229.
[9] 王东, 王森, 尚丽, 冯浩伟, 张永巧, 崔佳鸣, 李爽, 章佳聪, 车欢. 补灌对黄土高原半湿润区冬小麦产量和水分利用效率的影响[J]. 作物学报, 2025, 51(5): 1312-1325.
[10] 李培华, 李杰, 孟祥宇, 孙玉晨, 冯永佳, 李云丽, 刁邓超, 赵雯, 吴玮, 韩德俊, 张嵩午, 郑炜君. 高温胁迫下冷型小麦的抗逆性评估及其生理响应研究[J]. 作物学报, 2025, 51(4): 1118-1130.
[11] 李乔, 叶杨春, 常旭虹, 王德梅, 王艳杰, 杨玉双, 马瑞琦, 赵广才, 蔡瑞国, 张敏, 刘希伟. 花后高温干旱逆境对冬小麦光合特性和产量的影响[J]. 作物学报, 2025, 51(4): 1077-1090.
[12] 王娇, 白海霞, 韩语燕, 梁惠, 冯雅楠, 张东升, 李萍, 宗毓铮, 史鑫蕊, 郝兴宇. CO2浓度升高、升温及其交互作用对良星99冬小麦叶片碳氮代谢的影响[J]. 作物学报, 2025, 51(4): 1061-1076.
[13] 程红娜, 秦丹丹, 许甫超, 徐晴, 彭严春, 孙龙清, 徐乐, 郭英, 杨新泉, 徐得泽, 董静. 彩色青稞和彩色小麦籽粒的代谢组学比较分析[J]. 作物学报, 2025, 51(4): 932-942.
[14] 李慧敏, 邢志鹏, 张海鹏, 魏海燕, 张洪程, 李光彦. 化学调控及其他栽培措施在小麦抗倒伏高产栽培中的应用[J]. 作物学报, 2025, 51(4): 847-862.
[15] 张恒, 冯雅岚, 田文仲, 郭彬彬, 张均, 马超. 小麦TaSnRK基因家族鉴定及在局部根区干旱下的表达分析[J]. 作物学报, 2025, 51(3): 632-649.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!