欢迎访问作物学报,今天是

作物学报 ›› 2025, Vol. 51 ›› Issue (7): 1736-1746.doi: 10.3724/SP.J.1006.2025.44141

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

甘薯谷胱甘肽S-转移酶基因IbGSTU7的克隆及功能分析

尹雨萌1**(), 王雁楠1**(), 康志河1, 乔守晨1, 卞倩倩1, 李亚蔚1, 曹郭郑1, 赵国瑞1, 徐丹丹2, 杨育峰1,*()   

  1. 1河南省农业科学院粮食作物研究所, 河南郑州 450002
    2通许县农业科学研究所, 河南开封 475400
  • 收稿日期:2024-08-30 接受日期:2025-04-27 出版日期:2025-07-12 网络出版日期:2025-05-07
  • 通讯作者: *杨育峰, E-mail: yyfyyf5@163.com
  • 作者简介:尹雨萌, E-mail: yinyumeng0521@163.com;
    王雁楠, E-mail: alman001@hnagri.org.cn
    **同等贡献
  • 基金资助:
    财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-10);河南省现代农业产业技术体系建设专项(HARS-22-04-G1);河南省农业科学院优秀青年科技基金项目(2024YQ17);河南省农业科学院自主创新项目(2024ZC014);河南省中央引导地方科技发展资金项目(Z20231811177)

Cloning and functional analysis of glutathione S-transferase gene IbGSTU7 in sweetpotato

YIN Yu-Meng1**(), WANG Yan-Nan1**(), KANG Zhi-He1, QIAO Shou-Chen1, BIAN Qian-Qian1, LI Ya-Wei1, CAO Guo-Zheng1, ZHAO Guo-Rui1, XU Dan-Dan2, YANG Yu-Feng1,*()   

  1. 1Cereal Crop Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, Henan, China
    2Tongxu Academy of Agricultural Sciences, Kaifeng 475400, Henan, China
  • Received:2024-08-30 Accepted:2025-04-27 Published:2025-07-12 Published online:2025-05-07
  • Contact: *E-mail: yyfyyf5@163.com
  • About author:**Contributed equally to this work
  • Supported by:
    China Agriculture Research System of MOF and MARA(CARS-10);Special Fund for Henan Agriculture Research System(HARS-22-04-G1);Outstanding Youth Science and Technology Fund of Henan Academy of Agricultural Sciences(2024YQ17);Autonomous Innovation Project of Henan Academy of Agricultural Sciences(2024ZC014);Central Government Guides Local Funds for Scientific and Technological Development of Henan Province(Z20231811177)

摘要:

本研究通过分析前期的薯皮色变异转录组数据, 克隆得到IbGSTU7基因, 该基因开放阅读框(ORF)全长660 bp, 编码219个氨基酸。蛋白序列分析表明, IbGSTU7为酸性、亲水性、稳定性蛋白, 且与甘薯近缘野生种Ipomoea triloba的亲缘关系最近, 定位于细胞质中。通过实时荧光定量PCR (qRT-PCR)对IbGSTU7基因的表达特征进行分析发现, IbGSTU7在甘薯主要组织中均有表达, 且在薯皮中的表达量最高。此外, 干旱、盐胁迫以及外源脱落酸(ABA)均可诱导IbGSTU7基因上调表达。通过农杆菌转化法对IbGSTU7在甘薯中进行过表达发现, 过表达植株的薯皮花青苷含量以及花青苷合成途径相关基因IbPALIbUFGT的表达量均显著提高。同时, PEG模拟干旱胁迫下过表达植株表现出更强的抗旱性, 鲜重和根长显著高于野生型对照, 过氧化氢(H2O2)含量显著降低, 活性氧(ROS)清除相关基因IbMDHARIbPOD显著上调表达。本研究为进一步探索IbGSTU7基因在甘薯花青苷积累和干旱胁迫应答中的功能提供了新的理论支撑。

关键词: 甘薯, IbGSTU7, 过表达, 花青苷, 抗旱性

Abstract:

In this study, the IbGSTU7 gene was cloned based on our previously obtained transcriptome data from a sweetpotato skin color mutant. The open reading frame (ORF) of IbGSTU7 is 660 bp in length and encodes a protein comprising 219 amino acids. Protein sequence analysis revealed that IbGSTU7 is an acidic, hydrophilic, and structurally stable protein, showing the closest phylogenetic relationship to its homolog in Ipomoea triloba, a wild relative of sweetpotato. Subcellular localization analysis indicated that IbGSTU7 is localized in the cytoplasm. Quantitative RT-PCR analysis demonstrated that IbGSTU7 is expressed across major sweetpotato tissues, with the highest transcript level observed in the skin of storage roots. Furthermore, its expression was inducible by drought, salt, and exogenous abscisic acid (ABA) treatments. The IbGSTU7 gene was subsequently overexpressed in sweetpotato using an Agrobacterium tumefaciens-mediated transformation method. In overexpression (OE) lines, anthocyanin content in the skin of storage roots and the expression levels of anthocyanin biosynthesis-related genes IbPAL and IbUFGT were significantly increased. Additionally, the OE plants exhibited enhanced tolerance to PEG-simulated drought stress, as evidenced by significant increases in fresh weight and root length compared to wild-type (WT) plants. Under drought conditions, OE lines showed a marked reduction in hydrogen peroxide (H2O2) levels, accompanied by significant upregulation of reactive oxygen species (ROS) scavenging-related genes IbMDHAR and IbPOD. These findings provide novel insights into the role of IbGSTU7 in regulating anthocyanin accumulation and improving drought stress tolerance in sweetpotato.

Key words: sweetpotato, IbGSTU7, overexpression, anthocyanin, drought resistance

表1

本研究所用的引物信息"

引物名称
Primer name
引物序列
Primer sequence (5′-3′)
引物目的
Primer purpose
IbORF-F ATGGCAGAAGTGAAGGTTTT ORF扩增引物
IbORF-R TTACATGAATACCTTGGTGTAGTAG ORF amplification
GSTU7-p1300-F CGAGCTCATGGCAGAAGTGAAGGTTTTAG 亚细胞定位
GSTU7-p1300-R CGGATCCCATGAATACCTTGGTGTAGTAGGG Subcellular localization
GSTU7-p1302-F GACTAGTATGGCAGAAGTGAAGGTTTT 过表达
GSTU7-p1302-R GGGTGACCTTACATGAATACCTTGGTGTAGTAG Overexpression
1302-35S-F GAAGATAGTGGAAAAGGAAGGTG 转基因阳性鉴定
GSTU7-324-R CCTTTGGTAAATACTGCTTTCTCC Transgenic positive identification
QGSTU7-F AGTGAAGGTTTTAGGGTCGTGG 实时荧光定量PCR
QGSTU7-R GACAGGGTTGGATTTGAGAAGC Real-time quantitative PCR
Actin-F AGCAGCATGAAGATTAAGGTTGTAGCAC
Actin-R TGGAAAATTAGAAGCACTTCCTGTGAAC
IbMDHAR-F CTACTCCCGTGCCTTTGATT
IbMDHAR-R CTCCAAGAATGCACCAACAA
IbPOD-F TTCACGACTGCTTCGTTGA
IbPOD-R TTCTCAACCGCGGTCTTAA
IbCHI-F CCGATCATAGAAGCCGCCAT
IbCHI-R CTCCGGCATTGAACCCTCTT
IbPAL-F CCCTGCAGTGCTAACTACCC
IbPAL-R GAATAGCCGGGTTCCCACTC
IbUFGT-F CAAACGGAAACGGGTTGGAC
IbUFGT-R CGGTGGGTTCTAGCTTCTGG

图1

IbGSTU7基因的生物信息学分析 A: IbGSTU7蛋白的三级结构分析; B: IbGSTU7蛋白和其他物种中相关蛋白的同源进化树分析。"

图2

IbGSTU7蛋白的亚细胞定位 标尺为30.0 μm。"

图3

IbGSTU7基因在苏薯8号中的表达分析 A: IbGSTU7基因在苏薯8号不同组织中的表达。B: IbGSTU7基因对不同处理的响应。S: 茎; L: 叶片; PR: 柴根; SSR: 薯皮; FSR: 薯肉。*、**分别表示在0.05和0.01水平差异显著。"

图4

过表达IbGSTU7基因栗子香植株的获得 A: 栗子香胚性愈伤组织; B: Hyg抗性愈伤组织的形成; C: 体细胞胚的形成; D: 拟转基因植株的再生; E: 长大的拟转基因植株; F: 完整的拟转基因植株; G: 试管苗扩繁; H: 温室驯化; I: 大田种植。标尺为2 cm。"

图5

过表达转基因甘薯植株中的IbGSTU7基因的qRT-PCR分析 *、**分别表示在0.05和0.01水平差异显著。"

图6

过表达IbGSTU7基因促进薯皮中的花青苷积累 A: WT和IbGSTU7过表达株系在田间生长4个月后的薯皮和薯肉颜色, 标尺为5 cm; B~C: WT和IbGSTU7过表达株系薯皮的类胡萝卜素(B)和花青苷含量(C); D: WT和IbGSTU7过表达株系薯肉的花青苷含量; E~G: WT和IbGSTU7过表达株系中IbCHI (E)、IbPAL (F)和IbUFGT (G)基因的表达量。*、**分别表示在0.05和0.01水平差异显著。"

图7

过表达IbGSTU7基因增强了甘薯的抗旱性 A~F: 在含20% PEG-6000的MS培养基上培养4周的WT和IbGSTU7过表达株系的表型(A)、鲜重(B)、根长(C)、IbMDHAR基因表达量(D)、IbPOD基因表达量(E)和H2O2含量(F)。标尺为5 cm。*、**分别表示在0.05和0.01水平差异显著。"

[1] 王雁楠, 陈金金, 卞倩倩, 胡琳琳, 张莉, 尹雨萌, 乔守晨, 曹郭郑, 康志河, 赵国瑞, 等. 转录组与代谢组联合分析揭示遮阴胁迫下甘薯的代谢响应途径. 作物学报, 2023, 49: 1785-1798.
doi: 10.3724/SP.J.1006.2023.24137
Wang Y N, Chen J J, Bian Q Q, Hu L L, Zhang L, Yin Y M, Qiao S C, Cao G Z, Kang Z H, Zhao G R, et al. Integrated analysis of transcriptome and metabolome reveals the metabolic response pathways of sweetpotato under shade stress. Acta Agron Sin, 2023, 49: 1785-1798 (in Chinese with English abstract).
[2] 王欣, 李强, 曹清河, 马代夫. 中国甘薯产业和种业发展现状与未来展望. 中国农业科学, 2021, 54: 483-492.
doi: 10.3864/j.issn.0578-1752.2021.03.003
Wang X, Li Q, Cao Q H, Ma D F. Current status and future prospective of sweetpotato production and seed industry in China. Sci Agric Sin, 2021, 54: 483-492 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2021.03.003
[3] Yan H, Ma M, Ahmad M Q, Arisha M H, Tang W, Li C, Zhang Y G, Kou M, Wang X, Gao R F, et al. High-density single nucleotide polymorphisms genetic map construction and quantitative trait locus mapping of color-related traits of purple sweet potato [Ipomoea batatas (L.) Lam.]. Front Plant Sci, 2022, 12: 797041.
[4] Drapal M, Rossel G, Heider B, Fraser P D. Metabolic diversity in sweet potato (Ipomoea batatas, Lam.) leaves and storage roots. Hortic Res, 2019, 6: 2.
[5] Khoo H E, Azlan A, Tang S T, Lim S M. Anthocyanidins and anthocyanins: colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr Res, 2017, 61: 1361779.
[6] Holton T A, Cornish E C. Genetics and biochemistry of anthocyanin biosynthesis. Plant Cell, 1995, 7: 1071-1083.
[7] Sunil L, Shetty N P. Biosynthesis and regulation of anthocyanin pathway genes. Appl Microbiol Biotechnol, 2022, 106: 1783-1798.
doi: 10.1007/s00253-022-11835-z pmid: 35171341
[8] Honda C, Kotoda N, Wada M, Kondo S, Kobayashi S, Soejima J, Zhang Z L, Tsuda T, Moriguchi T. Anthocyanin biosynthetic genes are coordinately expressed during red coloration in apple skin. Plant Physiol Biochem, 2002, 40: 955-962.
[9] Petroni K, Tonelli C. Recent advances on the regulation of anthocyanin synthesis in reproductive organs. Plant Sci, 2011, 181: 219-229.
doi: 10.1016/j.plantsci.2011.05.009 pmid: 21763532
[10] 刘泽.花青素还原酶调控绿豆芽下胚轴花青苷积累的机理. 南京农业大学硕士学位论文, 江苏南京, 2022.
Liu Z. Mechanism of Anthocyanin Reductase Regulation of Anthocyanin Accumulation in Mung Bean Hypocotyl. MS Thesis of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2022 (in Chinese with English abstract).
[11] Goodman C D, Casati P, Walbot V. A multidrug resistance-associated protein involved in anthocyanin transport in Zea mays. Plant Cell, 2004, 16: 1812-1826.
[12] Zhao J. Flavonoid transport mechanisms: how to go, and with whom. Trends Plant Sci, 2015, 20: 576-585.
doi: 10.1016/j.tplants.2015.06.007 pmid: 26205169
[13] Marrs K A, Alfenito M R, Lloyd A M, Walbot V. A glutathione S-transferase involved in vacuolar transfer encoded by the maize gene Bronze-2. Nature, 1995, 375: 397-400.
[14] Alfenito M R, Souer E, Goodman C D, Buell R, Mol J, Koes R, Walbot V. Functional complementation of anthocyanin sequestration in the vacuole by widely divergent glutathione S-transferases. Plant Cell, 1998, 10: 1135-1149.
doi: 10.1105/tpc.10.7.1135 pmid: 9668133
[15] Kitamura S, Shikazono N, Tanaka A. TRANSPARENT TESTA 19 is involved in the accumulation of both anthocyanins and proanthocyanidins in Arabidopsis. Plant J, 2004, 37: 104-114.
doi: 10.1046/j.1365-313x.2003.01943.x pmid: 14675436
[16] Conn S, Curtin C, Bézier A, Franco C, Zhang W. Purification, molecular cloning, and characterization of glutathione S-transferases (GSTs) from pigmented Vitis vinifera L. cell suspension cultures as putative anthocyanin transport proteins. J Exp Bot, 2008, 59: 3621-3634.
[17] Hu B, Zhao J T, Lai B, Qin Y H, Wang H C, Hu G B. LcGST4 is an anthocyanin-related glutathione S-transferase gene in Litchi chinensis Sonn. Plant Cell Rep, 2016, 35: 831-843.
[18] 刘禹姗, 陈丽, 邓宇, 蔡莉, 李亚东, 孙海悦. 越橘谷胱甘肽巯基转移酶基因的克隆及表达. 吉林农业大学学报, 2017, 39: 423-431.
Liu Y S, Chen L, Deng Y, Cai L, Li Y D, Sun H Y. Cloning and expression analysis of glutathione S-transferase gene in blueberry. J Jilin Agric Univ, 2017, 39: 423-431 (in Chinese with English abstract).
[19] Zhang Y Y, Zhang Z N, Guo S J, Qu P Y, Liu J P, Cheng C Z. Characterization of blueberry glutathione S-transferase (GST) genes and functional analysis of VcGSTF8 reveal the role of ‘MYB/bHLH-GSTF’ module in anthocyanin accumulation. Ind Crops Prod, 2024, 218: 119006.
[20] Qiu L K, Chen K, Pan J, Ma Z Y, Zhang J J, Wang J, Cheng T R, Zheng T C, Pan H T, Zhang Q X. Genome-wide analysis of glutathione S-transferase genes in four Prunus species and the function of PmGSTF2, activated by PmMYBa1, in regulating anthocyanin accumulation in Int J Biol Macromol. Int J Biol Macromol, 2024, 281: 136506.
[21] Jiang S H, Chen M, He N B, Chen X L, Wang N, Sun Q G, Zhang T L, Xu H F, Fang H C, Wang Y C, et al. MdGSTF6, activated by MdMYB1, plays an essential role in anthocyanin accumulation in apple. Hortic Res, 2019, 6: 40.
[22] Shao D N, Li Y J, Zhu Q H, Zhang X Y, Liu F, Xue F, Sun J. GhGSTF12, a glutathione S-transferase gene, is essential for anthocyanin accumulation in cotton (Gossypium hirsutum L.). Plant Sci, 2021, 305: 110827.
[23] Kou M, Liu Y J, Li Z Y, Zhang Y G, Tang W, Yan H, Wang X, Chen X G, Su Z X, Arisha M H, et al. A novel glutathione S-transferase gene from sweetpotato, IbGSTF4, is involved in anthocyanin sequestration. Plant Physiol Biochem, 2019, 135: 395-403.
[24] Gill S S, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem, 2010, 48: 909-930.
[25] Dong T T, Han R P, Yu J W, Zhu M K, Zhang Y, Gong Y, Li Z Y. Anthocyanins accumulation and molecular analysis of correlated genes by metabolome and transcriptome in green and purple asparaguses (Asparagus officinalis L.). Food Chem, 2019, 271: 18-28.
[26] Nakabayashi R, Mori T, Saito K. Alternation of flavonoid accumulation under drought stress in Arabidopsis thaliana. Plant Signal Behav, 2014, 9: e29518.
[27] Xu Z H, Mahmood K, Rothstein S J. ROS induces anthocyanin production via late biosynthetic genes and anthocyanin deficiency confers the hypersensitivity to ROS-generating stresses in Arabidopsis. Plant Cell Physiol, 2017, 58: 1364-1377.
[28] Wang J, Li D L, Peng Y X, Cai M H, Liang Z, Yuan Z P, Du X M, Wang J H, Schnable P S, Gu R L, et al. The anthocyanin accumulation related ZmBZ1, facilitates seedling salinity stress tolerance via ROS scavenging. Int J Mol Sci, 2022, 23: 16123.
[29] Hu Y F, Zhao H Y, Xue L Y, Nie N, Zhang H, Zhao N, He S Z, Liu Q C, Gao S P, Zhai H. IbMYC2 contributes to salt and drought stress tolerance via modulating anthocyanin accumulation and ROS- scavenging system in sweet potato. Int J Mol Sci, 2024, 25: 2096.
[30] Yang Y F, Shi D Y, Wang Y N, Zhang L, Chen X G, Yang X P, Xiong H Z, Bhattarai G, Ravelombola W, Olaoye D, et al. Transcript profiling for regulation of sweet potato skin color in Sushu 8 and its mutant Zhengshu 20. Plant Physiol Biochem, 2020, 148: 1-9.
[31] Strasser R, Bondili J S, Schoberer J, Svoboda B, Liebminger E, Glössl J, Altmann F, Steinkellner H, Mach L. Enzymatic properties and subcellular localization of Arabidopsis β-N- acetylhexosaminidases. Plant Physiol, 2007, 145: 5-16.
doi: 10.1104/pp.107.101162 pmid: 17644627
[32] 张铅, 禹阳, 刘帅, 贾赵东, 马佩勇, 金昊秀, 郭尚洙, 边小峰. 一种高效的甘薯遗传转化方法. 江苏师范大学学报(自然科学版), 2023, 41(2): 18-23.
Zhang Q, Yu Y, Liu S, Jia Z D, Ma P Y, Jin H X, Guo S Z, Bian X F. An efficient method for sweetpotato genetic transformation. J Jiangsu Norm Univ (Nat Sci Edn), 2023, 41(2): 18-23 (in Chinese with English abstract).
[33] 任志彤. 过表达IbCbEFPIbSnRK1基因甘薯植株的特性鉴定及分子机理分析. 中国农业大学博士学位论文,北京, 2018.
Ren Z T.C Characteristic Identification and Molecular Mechanism of Sweetpotato (Ipomoea batatas (L.) Lam.) Plants Overexpressing IbCbEFP and IbSnRKl. PhD Dissertation of China Agricultural University, Beijing, China, 2018 (in Chinese with English abstract).
[34] 王学奎, 黄见良. 植物生理生化实验原理与技术(第3版). 北京: 高等教育出版社, 2015. pp 131-133.
Wang X K, Huang J L. Principles and Techniques of Plant Physiological Biochemical Experiment, 3rd edn. Beijing: Higher Education Press, 2015. pp 131-133 (in Chinese).
[35] Wang H X, Yang J, Zhang M, Fan W J, Firon N, Pattanaik S, Yuan L, Zhang P. Altered phenylpropanoid metabolism in the maize lc-expressed sweet potato (Ipomoea batatas) affects storage root development. Sci Rep, 2016, 6: 18645.
[36] 张亚真, 张芬, 王丽鸳, 韦康, 成浩. 植物谷胱甘肽转移酶在类黄酮累积中的作用. 植物生理学报, 2015, 51: 1815-1820.
Zhang Y Z, Zhang F, Wang L Y, Wei K, Cheng H. Plant glutathione S-transferases: roles in flavonoid accumulation. Plant Physiol J, 2015, 51: 1815-1820 (in Chinese with English abstract).
[37] Sylvestre-Gonon E, Law S R, Schwartz M, Robe K, Keech O, Didierjean C, Dubos C, Rouhier N, Hecker A. Functional, structural and biochemical features of plant serinyl-glutathione transferases. Front Plant Sci, 2019, 10: 608.
doi: 10.3389/fpls.2019.00608 pmid: 31191562
[38] Zhao Y W, Wang C K, Huang X Y, Hu D G. Genome-wide analysis of the glutathione S-transferase (GST) genes and functional identification of MdGSTU12 reveals the involvement in the regulation of anthocyanin accumulation in apple. Genes, 2021, 12: 1733.
[39] 王璐, 戴思兰, 金雪花, 黄河, 洪艳. 植物花青素苷转运机制的研究进展. 生物工程学报, 2014, 30: 848-863.
Wang L, Dai S L, Jin X H, Huang H, Hong Y. Advances in plant anthocyanin transport mechanism. Chin J Biotechnol, 2014, 30: 848-863 (in Chinese with English abstract).
[40] Jiang H W, Liu M J, Chen I C, Huang C H, Chao L Y, Hsieh H L. A glutathione S-transferase regulated by light and hormones participates in the modulation of Arabidopsis seedling development. Plant Physiol, 2010, 154: 1646-1658.
[41] 谢开珍, 刘佳琪, 任磊, 张婷婷, 王爱民. 甘薯苯丙烷类代谢及其酶基因研究进展. 植物学研究, 2019, 8: 355-365.
Xie K Z, Liu J Q, Ren L, Zhang T T, Wang A M. Advances in phenylaprapanoid metabolism and its enzyme genes in sweet potato. Bot Res, 2019, 8: 355-365 (in Chinese with English abstract).
[42] Nakabayashi R, Saito K. Integrated metabolomics for abiotic stress responses in plants. Curr Opin Plant Biol, 2015, 24: 10-16.
doi: 10.1016/j.pbi.2015.01.003 pmid: 25618839
[43] Mittler R, Zandalinas S I, Fichman Y, Van Breusegem F. Reactive oxygen species signalling in plant stress responses. Nat Rev Mol Cell Biol, 2022, 23: 663-679.
[44] Thirumalaikumar V P, Devkar V, Mehterov N, Ali S, Ozgur R, Turkan I, Mueller-Roeber B, Balazadeh S. NAC transcription factor JUNGBRUNNEN1 enhances drought tolerance in tomato. Plant Biotechnol J, 2018, 16: 354-366.
doi: 10.1111/pbi.12776 pmid: 28640975
[45] Qi Q, Dong Y Y, Liang Y L, Li K Z, Xu H N, Sun X D. Overexpression of SlMDHAR in transgenic tobacco increased salt stress tolerance involving S-nitrosylation regulation. Plant Sci, 2020, 299: 110609.
[46] Aleem M, Riaz A, Raza Q, Aleem M, Aslam M, Kong K K, Atif R M, Kashif M, Bhat J A, Zhao T J. Genome-wide characterization and functional analysis of class III peroxidase gene family in soybean reveal regulatory roles of GsPOD40 in drought tolerance. Genomics, 2022, 114: 45-60.
[1] 金欣欣, 宋亚辉, 苏俏, 杨永庆, 李玉荣, 王瑾. 冀花系列高油酸花生抗旱性鉴定与综合评价[J]. 作物学报, 2025, 51(3): 797-811.
[2] 阳新月, 肖人滈, 张林茜, 唐铭均, 孙光燕, 杜康, 吕长文, 唐道彬, 王季春. 不同生育期涝渍对甘薯抗逆生理特性及产量形成的影响[J]. 作物学报, 2025, 51(3): 744-754.
[3] 霍如雪, 葛祥菡, 石嘉, 李雪蕊, 戴圣杰, 刘振宁, 李宗芸. 甘薯组氨酸激酶蛋白IbHK5响应干旱和盐胁迫的功能分析[J]. 作物学报, 2025, 51(3): 650-666.
[4] 王语新, 陈天羽, 翟红, 张欢, 高少培, 何绍贞, 赵宁, 刘庆昌. 甘薯激酶基因IbHT1的克隆及抗旱性功能鉴定[J]. 作物学报, 2025, 51(2): 301-311.
[5] 刘波, 池明, 曹梦琦, 唐达, 杨恒照, 张卫华, 薛聪. 过表达马铃薯StuPPO9基因对烟草抗旱能力的影响[J]. 作物学报, 2024, 50(9): 2237-2247.
[6] 孙一鸣, 田侠, 王少霞, 刘庆. 不同施磷水平对甘薯硒吸收、分配和转化的影响[J]. 作物学报, 2024, 50(6): 1608-1615.
[7] 杨春菊, 唐道彬, 张凯, 杜康, 黄红, 乔欢欢, 王季春, 吕长文. 氮钾减量配施对甘薯产量和品质的影响[J]. 作物学报, 2024, 50(5): 1341-1350.
[8] 朱晓亚, 张强强, 赵鹏, 刘明, 王静, 靳容, 于永超, 唐忠厚. 叶面喷施丹参碳点缓解甘薯低磷胁迫的转录组与代谢组学分析[J]. 作物学报, 2024, 50(2): 383-393.
[9] 武丽芬, 夏川, 张立超, 孔秀英, 陈景堂, 刘旭. TaEMF2调控小麦抽穗期的功能分析[J]. 作物学报, 2024, 50(12): 2940-2949.
[10] 蒋杨影, 唐铭均, 张林茜, 吕长文, 唐道彬, 王季春. 生长前期光照强度对甘薯叶片光合生理和结薯的影响[J]. 作物学报, 2024, 50(10): 2575-2585.
[11] 杨毅, 何志强, 林佳慧, 李洋, 陈飞, 吕长文, 唐道彬, 周全卢, 王季春. 椰糠施用量对土壤理化性状和甘薯产量的影响[J]. 作物学报, 2023, 49(9): 2517-2527.
[12] 苏一钧, 赵路宽, 唐芬, 戴习彬, 孙亚伟, 周志林, 刘亚菊, 曹清河. 378份甘薯引进种遗传多样性及群体结构分析[J]. 作物学报, 2023, 49(9): 2582-2593.
[13] 贾瑞雪, 陈伊航, 张荣, 唐朝臣, 王章英. 超高效液相色谱法同时测定甘薯中13种类胡萝卜素的含量[J]. 作物学报, 2023, 49(8): 2259-2274.
[14] 王雁楠, 陈金金, 卞倩倩, 胡琳琳, 张莉, 尹雨萌, 乔守晨, 曹郭郑, 康志河, 赵国瑞, 杨国红, 杨育峰. 转录组与代谢组联合分析揭示遮阴胁迫下甘薯的代谢响应途径[J]. 作物学报, 2023, 49(7): 1785-1798.
[15] 朱旭东, 杨兰锋, 陈媛媛, 侯泽豪, 罗旖柔, 熊泽浩, 方正武. 甜荞FeSGT1基因克隆及抗旱功能解析[J]. 作物学报, 2023, 49(6): 1573-1583.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .