欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (2): 506-513.doi: 10.3724/SP.J.1006.2024.31040

• 研究简报 • 上一篇    下一篇

小麦穗型相关生长素通路基因发掘及TaARF23-A与小穗数关联分析

谭丹(), 陈家婷, 郜钰, 张晓军, 李欣, 闫贵云, 李锐, 陈芳, 常利芳, 张树伟, 郭慧娟, 畅志坚, 乔麟轶*()   

  1. 山西农业大学农学院 / 作物遗传与分子改良山西省重点实验室 / 农业农村部有机旱作农业重点实验室(部省共建), 山西太原 030031
  • 收稿日期:2023-06-22 接受日期:2023-09-13 出版日期:2024-02-12 网络出版日期:2023-09-27
  • 通讯作者: *乔麟轶, E-mail: linyi.qiao@sxau.edu.cn
  • 作者简介:E-mail: t17311990323@163.com
  • 基金资助:
    国家自然科学基金项目(32201749);山西省重点研发计划项目(202102140601001)

Discovery of auxin pathway genes involving spike type and association analysis between TaARF23-A and spikelet number in wheat

TAN Dan(), CHEN Jia-Ting, GAO Yu, ZHANG Xiao-Jun, LI Xin, YAN Gui-Yun, LI Rui, CHEN Fang, CHANG Li-Fang, ZHANG Shu-Wei, GUO Hui-Juan, CHANG Zhi-Jian, QIAO Lin-Yi*()   

  1. College of Agriculture, Shanxi Agricultural University / Shanxi Key Laboratory of Crop Genetics and Molecular Improvement / Key Laboratory of Sustainable Dryland Agriculture (co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Taiyuan 030031, Shanxi, China
  • Received:2023-06-22 Accepted:2023-09-13 Published:2024-02-12 Published online:2023-09-27
  • Contact: *E-mail: linyi.qiao@sxau.edu.cn
  • Supported by:
    National Natural Science Foundation of China(32201749);Shanxi Key Research and Development Program(202102140601001)

摘要:

生长素是调控作物穗部形态的主要内源激素之一。为了发掘小麦中与穗型相关的生长素通路基因, 本研究选择了纺锤穗型品系SY95-71和密穗品系CH7034, 对其幼穗内源生长素含量进行了检测, 结果显示SY95-71幼穗中的色胺含量显著高于CH7034。转录组测序结果表明, 在高置信区间(P<0.01)范围内, SY95-71幼穗中富集到4个特有的生长素相关条目, 并且色氨酸脱羧酶基因(负责将色氨酸转化为色胺)和生长素响应因子基因(Auxin Response Factors, ARFs)的转录水平均显著高于CH7034。对在SY95-71中高表达的2个ARF基因(TraesCS7A02G475700TraesCS7A02G475600)作了进一步分析, 结果显示二者是位于7A染色体长臂上的一对串联重复基因, 根据小麦ARF家族成员编号, 将其分别命名为TaARF23-A1TaARF23-A2。qRT-PCR结果证实SY95-71幼穗中TaARF23-A1TaARF23-A2的表达量极显著高于CH7034。测序结果显示TaARF23-A的外显子序列在SY95-71和CH7034间具有2个SNP和1个InDel。根据InDel位点开发分子标记, 并将其与SY95-71和CH7034的RILs群体在6个大田环境下的穗部表型进行关联分析, 结果显示TaARF23-A与小穗数显著相关(P<0.0001), 其CH7034型等位变异比SY95-71型等位变异增加了1.67个小穗。本研究结果将为小穗发育机制解析提供参考, 也为小麦理想穗型改良提供了分子标记。

关键词: 小麦, 穗型, 生长素, TaARF23-A, 小穗数, 分子标记

Abstract:

Auxin is one of the major endogenous hormones that regulate the spike morphology in crops. In order to explore the auxin pathway genes involving spike type in wheat, the line SY95-71 with spindle spike and line CH7034 with compacted spike were selected to detect the endogenous auxin content in their young spikes. The results showed that the tryptophan content in SY95-71’s young spikes was significantly higher than that in CH7034. RNA-seq results showed that four specific auxin-related GO items were enriched in SY95-71 young spikes within the high confidence interval (P<0.01), and the relative expression levels of Tryptophan Decarboxylase genes (responsible for transforming tryptophan into tryptamine) and Auxin Response Factor genes (ARFs) in SY95-71 were significantly higher than those in CH7034. Further analysis of two highly expressed ARF genes (TraesCS7A02G475600 and TraesCS7A02G475700) in SY95-71 revealed that they were a pair of tandem repeat genes located on the long arm of chromosome 7A and named TaARF23-A1 and TaARF23-A2 based on the IDs of ARF family member in wheat, respectively. The qRT-PCR results confirmed that the relative expression levels of TaARF23-A1 and TaARF23-A2 in SY95-71 young spikes were significantly higher than those in CH7034. The sequencing results showed that the exon of TaARF23-A had two SNPs and one InDel site between SY95-71 and CH7034. A molecular marker was developed based on the InDel site and then used to associated with the spike phenotypes of the recombinant inbred lines population derived by the cross of SY95-71 and CH7034 in six field environments. The results showed that TaARF23-A was significant correlation with spikelet number (P<0.0001), and its CH7034 allele increased by 1.67 spikelets compared with the SY95-71 allele. The results of this study provide the reference for the understanding of the development mechanism of spikelet and molecular marker for the improvement of ideal spike type in wheat.

Key words: wheat, spike type, auxin, TaARF23-A, spikelet, molecular marker

表1

TaARF23相关引物"

引物名称
Primer name
正向引物
Forward sequence (5′-3′)
反向引物
Reverse sequence (5′-3′)
退火温度
Tm (℃)
扩增长度
Size (bp)
A1-q CGAAGCTTGGAGGTATGTATC GTGCTAATGCACATGGCTTG 58 177
A2-q GCGAAGCTTGGAGGTCGTT GTGCTAATGCACATGGCTTG 58 169
P1 GCCAATCAAGCAAGGATGTC CTGGTGGACAGCAGTGATC 58 951
P2 CGAGGAAGCTTCAGTTACAC TTCTCTGGACAGGTGATACC 58 927
InDel GCAGGAAGAAATCAATGAAGCAG GTAGTAGGTCACTTGGAATTGC 58 82/70

图1

小麦品系SY95-71和CH7034的穗型"

图2

生长素合成通路中5个化合物在SY95-71和CH7034幼穗间的含量比较 TRP: 色氨酸; TRA: 色胺; IAM: 吲哚乙酰胺; IAN: 吲哚已腈; IAA: 吲哚乙酸; **表示P < 0.01。"

图3

SY95-71和CH7034幼穗中生长素通路相关的GO富集 BP: 生物进程类; MF: 分子功能类。特有条目的编号加粗表示。*表示P < 0.05, **表示P < 0.01。"

图4

SY95-71幼穗中生长素通路相关DEGs 差异极显著(| log2 (FPKMSY/FPKMCH) | > 4)的DEGs用三角形标注。"

图5

TaARF23-A分析 a: TaARF23-A1和 TaARF23-A2序列分析以及引物位置。CS: 中国春。b~c: TaARF23-A1和 TaARF23-A2在SY95-71和CH7034幼穗中的相对表达量; ***表示P < 0.001, ****表示P < 0.0001。d: 引物P1和P2在CH7034 (CH)和SY95-71 (SY)中扩增产物的测序结果。e: TaARF23-A的InDel标记; M: DNA ladder指示带; 箭头指示多态性条带。"

图6

RILs群体中InDel标记型与6个环境下穗部表型的相关性分析 S: SY型条带; C: CH型条带; 14C: 2014年成都; 15C: 2015年成都; 16Y1: 2016年运城试验点1; 16Y2: 2016年运城试验点2; 15L: 2015年临汾; 16L: 2016年临汾; BLUP: 6个环境下的数据平均值; *表示P < 0.05, **表示P < 0.01, ****表示P < 0.0001。"

图7

TaARF23-A的预测靶基因 a: TaARF23-A正向调控TaIAA; b:TaARF23-A负向调控TaSAUR; TaSAUR转录数据由|log2(FPKMSY/FPKMCH)|≤1筛选获得; 启动子区的竖线表示ARF蛋白的结合元件AuxRE。"

[1] Luo X M, Yang Y M, Lin X L, Xiao J. Deciphering spike architecture formation towards yield improvement in wheat. J Genet Genomics, 2023, 50: 835-845.
doi: 10.1016/j.jgg.2023.02.015
[2] Zhang D, Yuan Z. Molecular control of grass inflorescence development. Annu Rev Plant Biol, 2014, 65: 553-578.
doi: 10.1146/annurev-arplant-050213-040104 pmid: 24471834
[3] Qi P F, Jiang Y F, Guo Z R, Chen Q, Ouellet T, Zong L J, Wei Z Z, Wang Y, Zhang Y Z, Xu B J, Kong L, Deng M, Wang J R, Chen G Y, Jiang Q T, Lan X J, Li W, Wei Y M, Zheng Y L. Transcriptional reference map of hormone responses in wheat spikes. BMC Genomics, 2019, 20: 390.
doi: 10.1186/s12864-019-5726-x
[4] Di D W, Zhang C G, Luo P, An C W, Guo G Q. The biosynthesis of auxin: how many paths truly lead to IAA? Plant Growth Regul, 2016, 78: 275-285.
doi: 10.1007/s10725-015-0103-5
[5] Youssef H M, Eggert K, Koppolu R, Alqudah A M, Poursarebani N, Fazeli A, Sakuma S, Tagiri A, Rutten T, Govind G, Lundqvist U, Graner A, Komatsuda T, Sreenivasulu N, Schnurbusch T. VRS2 regulates hormone-mediated inflorescence patterning in barley. Nat Genet, 2017, 49: 157-161.
doi: 10.1038/ng.3717 pmid: 27841879
[6] Youssef H M, Hansson M. Crosstalk among hormones in barley spike contributes to the yield. Plant Cell Rep, 2019, 38: 1013-1016.
doi: 10.1007/s00299-019-02430-0 pmid: 31139893
[7] Zwirek M, Waugh R, McKim S M. Interaction between row-type genes in barley controls meristem determinacy and reveals novel routes to improved grain. New Phytol, 2019, 221: 1950-1965.
doi: 10.1111/nph.15548 pmid: 30339269
[8] Li Y P, Fu X, Zhao M, Zhang W, Li B, An D, Li J, Zhang A, Liu R, Liu X G. A genome-wide view of transcriptome dynamics during early spike development in bread wheat. Sci Rep, 2018, 8: 15338.
doi: 10.1038/s41598-018-33718-y pmid: 30337587
[9] Zhu Y, Wagner D. Plant inflorescence architecture: the formation, activity, and fate of axillary meristems. Cold Spring Harb Perspect Biol, 2020, 12: a034652.
doi: 10.1101/cshperspect.a034652
[10] Shi X, Cui F, Han X, He Y, Zhao L, Zhang N, Zhang H, Zhu H, Liu Z, Ma B, Zheng S, Zhang W, Liu J, Fan X, Si Y, Tian S, Niu J, Wu H, Liu X, Chen Z, Meng D, Wang X, Song L, Sun L, Han J, Zhao H, Ji J, Wang Z, He X, Li R, Chi X, Liang C, Niu B, Xiao J, Li J, Ling H Q. Comparative genomic and transcriptomic analyses uncover the molecular basis of high nitrogen-use efficiency in the wheat cultivar Kenong 9204. Mol Plant, 2022, 15: 1440-1456.
doi: 10.1016/j.molp.2022.07.008
[11] Zadoks J C, Chang T T, Konzak C F. A decimal code for the growth stages of cereals. Weed Res, 1974, 14: 415-421.
doi: 10.1111/wre.1974.14.issue-6
[12] 杨足君, 舒焕麟, 李光蓉. 利用种子储藏蛋白电泳分析小麦材料SY95-71及其亲本的遗传变异. 四川农业大学学报, 2000, 18(1): 7-10.
Yang Z J, Shu H L, Li G R. Genetic variations of seed storage protein in wheat line SY95-71 and its parents. J Sichuan Agric Univ, 2000, 18(1): 7-10 (in Chinese with English abstract).
[13] 张潇文, 李世姣, 张晓军, 李欣, 杨足君, 张树伟, 陈芳, 常利芳, 郭慧娟, 畅志坚, 乔麟轶. 小麦品系CH7034中耐盐QTL定位. 作物学报, 2022, 48: 2654-2662.
doi: 10.3724/SP.J.1006.2022.11074
Zhang X W, Li S J, Zhang X J, Li X, Yang Z J, Zhang S W, Chen F, Chang L F, Guo H J, Chang Z J, Qiao L Y. QTL mapping for salt tolerance in wheat line CH7034. Acta Agron Sin, 2022, 48: 2654-2662 (in Chinese with English abstract).
[14] Qiao L Y, Zhang W P, Li X Y, Zhang L, Zhang X J, Li X, Guo H J, Ren Y K, Zheng J, Chang Z J. Characterization and expression patterns of auxin response factors in wheat. Front Plant Sci, 2018, 9: 1395.
doi: 10.3389/fpls.2018.01395 pmid: 30283490
[15] Israeli A, Reed J W, Ori N. Genetic dissection of the auxin response network. Nat Plants, 2020, 6: 1082-1090.
doi: 10.1038/s41477-020-0739-7 pmid: 32807951
[16] Bargmann B O, Vanneste S, Krouk G, Nawy T, Efroni I, Shani E, Choe G, Friml J, Bergmann D C, Estelle M, Birnbaum K D. A map of cell type-specific auxin responses. Mol Syst Biol, 2013, 9: 688.
doi: 10.1038/msb.2013.40 pmid: 24022006
[17] Du M, Bou Daher F, Liu Y, Steward A, Tillmann M, Zhang X, Wong J H, Ren H, Cohen J D, Li C, Gray W M. Biphasic control of cell expansion by auxin coordinates etiolated seedling development. Sci Adv, 2022, 8: eabj1570.
doi: 10.1126/sciadv.abj1570
[18] Hayashi K I, Arai K, Aoi Y, Tanaka Y, Hira H, Guo R, Hu Y, Ge C, Zhao Y, Kasahara H, Fukui K. The main oxidative inactivation pathway of the plant hormone auxin. Nat Commun, 2021, 12: 6752.
doi: 10.1038/s41467-021-27020-1
[19] Xiong L, Huang Y, Liu Z, Li C, Yu H, Shahid M Q, Lin Y, Qiao X, Xiao J, Gray J E, Jin J. Small EPIDERMAL PATTERNING FACTOR-LIKE2 peptides regulate awn development in rice. Plant Physiol, 2022, 190: 516-531.
doi: 10.1093/plphys/kiac278 pmid: 35689635
[20] Ochagavia H, Prieto P, Savin R, Griffiths S, Slafer G. Dynamics of leaf and spikelet primordia initiation in wheat as affected by Ppd-1a alleles under field conditions. J Exp Bot, 2018, 69: 2621-2631.
doi: 10.1093/jxb/ery104
[21] Chen Z, Cheng X, Chai L, Wang Z, Du D, Wang Z, Bian R, Zhao A, Xin M, Guo W, Hu Z, Peng H, Yao Y, Sun Q, Ni Z. Pleiotropic QTL influencing spikelet number and heading date in common wheat (Triticum aestivum L.). Theor Appl Genet, 2020, 133: 1825-1838.
doi: 10.1007/s00122-020-03556-6
[22] Dobrovolskaya O, Pont C, Sibout R, Martinek P, Badaeva E, Murat F, Chosson A, Watanabe N, Prat E, Gautier N, Gautier V, Poncet C, Orlov Y L, Krasnikov A A, Bergès H, Salina E, Laikova L, Salse J. FRIZZY PANICLE drives supernumerary spikelets in bread wheat. Plant Physiol, 2015, 167: 189-199
doi: 10.1104/pp.114.250043 pmid: 25398545
[23] 丁浦洋, 周界光, 赵聪豪, 唐华苹, 牟杨, 唐力为, 邓梅, 魏育明, 兰秀锦, 马建. 小麦小穗数调控基因WAPO1的单倍型、遗传效应、地理分布及育种利用分析. 作物学报, 2022, 48: 2196-2209.
doi: 10.3724/SP.J.1006.2022.11078
Ding P Y, Zhou J G, Zhao C H, Tang H P, Mu Y, Tang L W, Deng M, Wei Y M, Lan X J, Ma J. Dissection of haplotypes, geographical distribution and breeding utilization of WAPO1 associated with spike development in wheat. Acta Agron Sin, 2022, 48: 2196-2209 (in Chinese with English abstract).
[24] Chen Z, Ke W, He F, Chai L, Cheng X, Xu H, Wang X, Du D, Zhao Y, Chen X, Xing J, Xin M, Guo W, Hu Z, Su Z, Liu J, Peng H, Yao Y, Sun Q, Ni Z. A single nucleotide deletion in the third exon of FT-D1 increases the spikelet number and delays heading date in wheat (Triticum aestivum L.). Plant Biotechnol J, 2022, 20: 920-933.
doi: 10.1111/pbi.v20.5
[25] Zhang X Y, Jia H Y, Li T, Wu J Z, Nagarajan R, Lei L, Powers C, Kan C C, Hua W, Liu Z Y, Chen C, Carver B F, Yan L L. TaCol-B5 modifies spike architecture and enhances grain yield in wheat. Science, 2022, 376: 180-183.
doi: 10.1126/science.abm0717
[26] 张宏娟, 李玉莹, 苗丽丽, 王景一, 李超男, 杨德龙, 毛新国, 景蕊莲. 小麦转录因子基因TaNAC67参与调控穗长和每穗小穗数. 作物学报, 2019, 45: 1615-1627.
doi: 10.3724/SP.J.1006.2019.91009
Zhang H J, Li Y Y, Miao L L, Wang J Y, Li C N, Yang D L, Mao X G, Jing R L. Transcription factor gene TaNAC67 involved in regulation spike length and spikelet number per spike in common wheat. Acta Agron Sin, 2019, 45: 1615-1627 (in Chinese with English abstract).
[27] Li Y, Xiao J, Wu J, Duan J, Liu Y, Ye X, Zhang X, Guo X, Gu Y, Zhang L, Jia J, Kong X. A tandem segmental duplication (TSD) in green revolution gene Rht-D1b region underlies plant height variation. New Phytol, 2012, 196: 282-291.
doi: 10.1111/nph.2012.196.issue-1
[28] Wang M, Yuan J, Qin L, Shi W, Xia G, Liu S. TaCYP81D5, one member in a wheat cytochrome P450 gene cluster, confers salinity tolerance via reactive oxygen species scavenging. Plant Biotechnol J, 2020, 18: 791-804.
doi: 10.1111/pbi.v18.3
[29] Jia M, Li Y, Wang Z, Tao S, Sun G, Kong X, Wang K, Ye X, Liu S, Geng S, Mao L, Li A. TaIAA21 represses TaARF25-mediated expression of TaERFs required for grain size and weight development in wheat. Plant J, 2021, 108: 1754-1767.
doi: 10.1111/tpj.v108.6
[30] Yin H, Li M, Lyu M, Hepworth S R, Li D, Ma C, Li J, Wang S M. SAUR15 promotes lateral and adventitious root development via activating H+-ATPases and auxin biosynthesis. Plant Physiol, 2020, 184: 837-851.
doi: 10.1104/pp.19.01250 pmid: 33890042
[31] Guilfoyle T J, Hagen G. Auxin response factors. Curr Opin Plant Biol, 2007, 10: 453-460.
doi: 10.1016/j.pbi.2007.08.014 pmid: 17900969
[32] Hu J, Li X, Sun T P. Four class A AUXIN RESPONSE FACTORs promote tomato fruit growth despite suppressing fruit set. Nat Plants, 2023, 9: 706-719.
doi: 10.1038/s41477-023-01396-y pmid: 37037878
[1] 郝倩琳, 杨廷志, 吕新茹, 秦慧敏, 王亚林, 贾晨飞, 夏先春, 马武军, 徐登安. 小麦胚芽鞘长度QTL定位和GWAS分析[J]. 作物学报, 2024, 50(3): 590-602.
[2] 琚吉浩, 马超, 王添宁, 吴毅, 董钟, 方美娥, 陈钰姝, 张均, 付国占. 小麦TaPOD家族的全基因组鉴定及表达分析[J]. 作物学报, 2024, 50(3): 779-792.
[3] 赵荣荣, 丛楠, 赵闯. 基于Landsat 8影像提取豫中地区冬小麦和夏玉米分布信息的最佳时相选择[J]. 作物学报, 2024, 50(3): 721-733.
[4] 张宝华, 刘佳静, 田晓, 田旭钊, 董阔, 武郁洁, 肖凯, 李小娟. 小麦TaSPX1基因的克隆、表达及耐低氮逆境的功能研究[J]. 作物学报, 2024, 50(3): 576-589.
[5] 范子培, 李龙, 史雨刚, 孙黛珍, 李超男, 景蕊莲. 小麦TabHLH112-2B基因克隆及每穗小穗数相关功能标记开发[J]. 作物学报, 2024, 50(2): 403-413.
[6] 柯会锋, 苏红梅, 孙正文, 谷淇深, 杨君, 王国宁, 徐东永, 王洪这, 吴立强, 张艳, 张桂寅, 马峙英, 王省芬. 棉花现代品种资源产量与纤维品质性状鉴定及分子标记评价[J]. 作物学报, 2024, 50(2): 280-293.
[7] 陈天, 李昱樱, 荣二花, 吴玉香. 棉属人工异源四倍体后代性状鉴定及花器转录组学分析[J]. 作物学报, 2024, 50(2): 325-339.
[8] 张康, 聂志刚, 王钧, 李广. 温度升高下APSIM模型春小麦籽粒生长参数敏感性分析及优化[J]. 作物学报, 2024, 50(2): 464-477.
[9] 李艳, 方宇辉, 王永霞, 彭超军, 华夏, 齐学礼, 胡琳, 许为钢. 不同磷胁迫处理转OsPHR2小麦的转录组学分析[J]. 作物学报, 2024, 50(2): 340-353.
[10] 谢炜, 贺鹏, 马宏亮, 雷芳, 黄秀兰, 樊高琼, 杨洪坤. 秋闲期秸秆覆盖与施磷对冬小麦氮素吸收利用的影响[J]. 作物学报, 2024, 50(2): 440-450.
[11] 李俣佳, 许豪, 于士男, 唐建卫, 李巧云, 高艳, 郑继周, 董纯豪, 袁雨豪, 郑天存, 殷贵鸿. 小麦骨干亲本周8425B抗条锈病优异基因在其衍生品种中的遗传解析[J]. 作物学报, 2024, 50(1): 16-31.
[12] 张丽华, 张经廷, 董志强, 侯万彬, 翟立超, 姚艳荣, 吕丽华, 赵一安, 贾秀领. 不同降水年型水分运筹对冬小麦产量及其构成的影响[J]. 作物学报, 2023, 49(9): 2539-2551.
[13] 张刁亮, 杨昭, 胡发龙, 殷文, 柴强, 樊志龙. 复种绿肥在不同灌水水平下对小麦籽粒品质和产量的影响[J]. 作物学报, 2023, 49(9): 2572-2581.
[14] 苏在兴, 黄忠勤, 高闰飞, 朱雪成, 王波, 常勇, 李小珊, 丁震乾, 易媛. 小麦矮秆突变体Xu1801的鉴定及其矮化效应分析[J]. 作物学报, 2023, 49(8): 2133-2143.
[15] 杨晓慧, 王碧胜, 孙筱璐, 侯靳锦, 徐梦杰, 王志军, 房全孝. 冬小麦对水分胁迫响应的模型模拟与节水滴灌制度优化[J]. 作物学报, 2023, 49(8): 2196-2209.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .