欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (4): 887-896.doi: 10.3724/SP.J.1006.2024.31044

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

基于SNP标记的小麦品种遗传相似度及其检测准确度分析

许乃银1(), 金石桥2,*(), 晋芳2, 刘丽华3, 徐剑文1, 刘丰泽2, 任雪贞2, 孙全2, 许栩1, 庞斌双3,*()   

  1. 1江苏省农业科学院经济作物研究所, 江苏南京 210014
    2全国农业技术推广服务中心, 北京 100125
    3北京市农林科学院杂交小麦研究所, 北京 100097
  • 收稿日期:2023-07-20 接受日期:2023-10-23 出版日期:2024-04-12 网络出版日期:2023-10-27
  • 通讯作者: * 金石桥, E-mail: jinshiqiao@agri.gov.cn;庞斌双, E-mail: 1492196201@qq.com
  • 作者简介:E-mail: naiyin@126.com
  • 基金资助:
    国家科技创新重大项目(2022ZD04019)

Genetic similarity and its detection accuracy analysis of wheat varieties based on SNP markers

XU Nai-Yin1(), JIN Shi-Qiao2,*(), JIN Fang2, LIU Li-Hua3, XU Jian-Wen1, LIU Feng-Ze2, REN Xue-Zhen2, SUN Quan2, XU Xu1, PANG Bin-Shuang3,*()   

  1. 1Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
    2National Agricultural Technical Extension and Service Center, Beijing 100125, China
    3Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
  • Received:2023-07-20 Accepted:2023-10-23 Published:2024-04-12 Published online:2023-10-27
  • Contact: * E-mail: jinshiqiao@agri.gov.cn; E-mail: 1492196201@qq.com
  • Supported by:
    National Scientific and Technological Innovation Major Project(2022ZD04019)

摘要:

遗传相似度检测的准确度估计是对SNP标记法在农作物品种检测体系中应用的必要补充和完善。本研究基于2021年小麦品种SNP标记法跨实验室协同验证实验数据, 分析了该方法的检测准确度及在品种间的遗传相似度。分析结果表明: (1) 10个实验室对55组小麦品种组合的标记位点相似度检测的总体准确度约为98%。(2) GGE双标图的品种遗传关系功能图显示, 7组小麦品种的组内遗传相似度在95%以上, 其余组合的遗传相似度较低。(3) 依据GGE双标图的“正确度-精确度”功能图和“准确度排序”功能图, 发现洛旱7号/洛旱11等品种组合的相似度检测准确度较高, 晋麦47/临抗11的检测准确度一般, 而济麦22/婴泊700的检测准确度较差。(4) 10个实验室的检测准确度存在显著差异, 其中2个实验室检测的正确度、精确度和准确度表现显著差于其余实验室。(5) 各实验室检测正确度的容许误差分布于1.3%~1.9%之间, 平均为1.5%; 准确度的容许误差分布于1.5%~2.0%之间, 平均为1.7%。其中, Lab2和Lab3的检测正确度和准确度的容许误差显著差于其余实验室。本研究构建了SNP标记法对品种相似性检测的准确度统计模型, 分析了品种组合和实验室的检测准确度及其容许误差, 采用GGE双标图方法对检测正确度、精确度和准确度进行可视化分析, 验证了各实验室对品种位点相似性检测的准确度和可靠性, 为SNP标记法在农作物品种遗传相似性检测中的准确度评价提供了理论支持和应用范例。

关键词: 小麦(Triticum aestivum L.), GGE双标图, SNP标记, 遗传相似度, 位点相似度, 准确度

Abstract:

The accuracy estimation of genetic similarity detection of crop varieties is an indispensable supplement and improvement to the application of SNP marker method in crop variety detection technology system. In this study, based on the cross-laboratory collaborative validation test data using SNP molecular marker method in 2021, the genetic similarity among wheat varieties and the accuracy of SNP molecular marker method in variety similarity detection were analyzed. The results showed as follows: (1) The overall accuracy of marker locus similarity detection among 55 wheat variety combinations by 10 laboratories was approximately 98%. (2) The genetic relationship between varieties view of GGE biplot delineated the genetic relationship between varieties. The genetic similarity between seven combinations of wheat varieties was over 95%, and the genetic similarity of other combinations was relatively lower. (3) The “trueness-precision” view and “accuracy ranking” view of GGE biplot identified that the similarity detection accuracy of the variety combination Jinmai 47/Linkang 11 was on average, Jimai 22/Yingbo 700 was relatively lower, while Luohan 7/Luohan 11 and other variety combinations were relatively high. (4) Significant differences were existed in detection accuracy among the 10 laboratories, and the performances in detection trueness, precision and accuracy of two laboratories were significantly worse than those of other laboratories. (5) The tolerance error of the trueness of each laboratory ranged from 1.3% to 1.9%, with an average of 1.5%. The tolerance error of accuracy was distributed between 1.5% and 2.0%, with an average of 1.7%. Among them, the tolerance errors of the detection trueness and accuracy of Lab2 and Lab3 were significantly worse than those of the other laboratories. In this study, the detection accuracy statistical model of SNP marker method in detecting crop variety similarity was constructed to analyze the detection accuracy and the corresponding tolerance error of variety combination in different laboratories, and the GGE biplot techniques were adopted to visualize the detection trueness, precision, and accuracy, so as to verify the accuracy and reliability of the detection method for variety locus similarity in each laboratory. Therefore, the findings in this study could provide the theoretical support and application examples for the accuracy evaluation of SNP marker detection technique system for genetic similarity among crop varieties.

Key words: wheat (Triticum aestivum L.), GGE biplot, SNP marker, genetic similarity, locus similarity, accuracy

表1

基于SNP标记鉴定小麦品种遗传相似性的实验室和抽样品种信息表"

实验室信息 Laboratory information 品种信息 Variety information
实验室
Laboratory
所在省(市)
Province (city)
检测平台
Detection platform
品种编号
Variety code
品种名称
Variety name
Lab1 北京Beijing IMAP W01 济麦22 Jimai 22
Lab2 北京Beijing LGC SNP line W02 婴泊700 Yingbo 700
Lab3 甘肃Gansu Quantitative PCR W03 晋麦47 Jinmai 47
Lab4 河北Hebei LGC SNP line W04 临抗11 Linkang 11
Lab5 河南Henan LGC SNP line W05 洛旱7号Luohan 7
Lab6 山西Shanxi LGC SNP line W06 洛旱11 Luohan 11
Lab7 陕西Shaanxi LGC SNP line W07 扬麦158 Yangmai 158
Lab8 四川Sichuan Array tape W08 扬麦11 Yangmai 11
Lab9 北京Beijing Quantitative PCR W09 扬麦12 Yangmai 12
Lab10 北京Beijing LGC SNP line W10 中科麦138 Zhongkemai 138
REF# 北京Beijing LGC SNP line W11 中科麦36 Zhongkemai 36

表2

小麦抽检品种SNP位点相似度与检测准确度平均值矩阵"

编号
Code
品种
Variety
W01 W02 W03 W04 W05 W06 W07 W08 W09 W10 W11
W01 济麦22 Jimai 22 97.8 97.1 97.4 98.2 97.4 97.2 97.3 97.7 97.7 97.0
W02 婴泊700 Yingbo 700 94.7 97.3 98.1 97.0 96.5 96.4 97.8 97.3 95.6 95.8
W03 晋麦47 Jinmai 47 52.1 55.5 98.6 96.7 96.2 97.2 97.7 96.2 97.2 97.6
W04 临抗11 Linkang 11 50.8 52.4 96.1 98.5 98.0 98.5 98.6 96.8 98.2 98.2
W05 洛旱7号 Luohan 7 60.2 58.2 53.0 54.1 99.1 98.1 98.0 97.0 98.0 98.3
W06 洛旱11 Luohan 11 59.3 57.4 52.8 53.9 96.9 97.0 97.0 97.0 98.2 98.3
W07 扬麦158 Yangmai 158 50.3 49.1 48.2 47.7 48.5 47.7 98.7 98.9 98.3 98.1
W08 扬麦11 Yangmai 11 49.5 48.2 51.0 50.5 49.5 48.7 96.1 98.8 98.6 98.9
W09 扬麦12 Yangmai 12 51.4 50.2 48.7 47.9 48.8 48.0 98.2 94.8 98.0 97.6
W10 中科麦138 Zhongkemai 138 44.9 42.0 49.9 51.1 47.1 46.9 61.3 62.0 61.8 99.2
W11 中科麦36 Zhongkemai 36 43.6 42.8 53.3 52.7 47.8 47.6 60.6 61.3 61.0 96.3

图1

基于小麦品种SNP位点相似度平均值的GGE双标图“品种遗传关系”功能图(a)和“品种组合关系+误差”功能图(b) 大写字母W后面的数字为品种编号, 具体品种名称详见表1。品种向量间的夹角表示品种间的遗传相关性, 夹角越小则相关性越强。图1-b中的蓝色小点表示各实验室检测的品种组合相似性图标, 其到品种组合图标的连线长短表示误差大小, 连线越长误差越大。"

图2

基于标准参照的小麦品种遗传相似度检测准确度GGE双标图分析的“正确度-精确度”功能图(a)和“准确度排序”功能图(b) 大写字母W后面的数字为品种组合编号, 如W01/02表示品种组合W01和W02, 具体品种名称详见表1。PC1相当于品种位点相似性检测的正确度, PC2的绝对值相当于精确度。图2-a中, 单箭头的横轴指向正确度大的方向, 双箭头的纵轴指向精确度差的方向。图2-b中的同心圆圆心为理想品种组合坐标, 品种组合图标到圆心的欧氏距离表示准确度, 距离越小则准确度越好。“+”为实验室图标。"

图3

实验室对小麦品种遗传相似度检测准确度GGE双标图分析的“正确度-精确度”功能图(a)和“准确度排序”功能图(b) 带“*”的实验室编号同表1, “+”表示品种组合图标。PC1相当于品种位点相似性检测的正确度, PC2的绝对值相当于精确度。图3-b中的同心圆圆心为标准参照坐标, 实验室图标到圆心的欧氏距离表示准确度, 距离越小则准确度越好。"

表3

不同实验室SNP标记法检测准确度及其容许误差估计"

实验室
Laboratory
所在省(市)
Province (city)
正确度
Trueness (%)
精确度
Precision (%)
准确度
Accuracy (%)
容许误差 Tolerance error (%)
正确度Trueness 准确度Accuracy
Lab8 四川Sichuan 99.08 a 1.05 e 98.48 a 1.31 e 1.52 e
Lab9 北京Beijing 98.90 ab 1.13 de 98.30 ab 1.37 de 1.58 de
Lab1 北京Beijing 98.70 abc 1.21 cde 98.11 abc 1.43 cde 1.62 cde
Lab7 陕西Shaanxi 98.60 abc 1.28 cd 98.01 abc 1.46 cd 1.64 cd
Lab4 河北Hebei 98.59 abc 1.25 cde 97.99 abc 1.45 cde 1.64 cd
Lab10 北京Beijing 98.41 bcd 1.36 bc 97.82 bcd 1.52 bc 1.69 bcd
Lab5 河南Henan 98.32 cd 1.37 bc 97.72 cd 1.55 bc 1.73 bc
Lab6 山西Shanxi 98.01 d 1.50 b 97.42 d 1.62 b 1.79 b
Lab2 北京Beijing 97.23 e 1.79 a 96.65 e 1.80 a 1.94 a
Lab3 甘肃Gansu 96.81 e 1.90 a 96.23 e 1.91 a 2.04 a
平均Mean 98.27 1.38 97.67 1.54 1.72
[1] 徐云碧, 王冰冰, 张健, 张嘉楠, 李建生. 应用分子标记技术改进作物品种保护和监管. 作物学报, 2022, 48: 1853-1870.
doi: 10.3724/SP.J.1006.2022.23001
Xu Y B, Wang B B, Zhang J, Zhang J N, Li J S. Enhancement of plant variety protection and regulation using molecular marker technology. Acta Agron Sin, 2022, 48: 1853-1870. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2022.23001
[2] 李巧英, 郑戈文. SNP分子标记技术在农作物种子检测中的研究与应用. 中国种业, 2019, (11): 16-18.
Li Q Y, Zheng G W. Research and application of SNP molecular marker technology in crop seed detection. China Seed Industry, 2019, (11): 16-18. (in Chinese)
[3] 庞斌双, 任雪贞, 刘丽华, 赵昌平, 张明明, 金石桥, 李宏博, 刘阳娜, 周泽宇, 张风廷, 张立平, 张胜全, 马锦绣, 权威, 王穆穆, 张旭, 侯建, 关海涛, 傅友兰, 王卫红. 小麦品种真实性鉴定 SNP标记法. 中华人民共和国农业行业标准, 2021, NY/T 4021-2021.
Pang B S, Ren X Z, Liu L H, Zhao C P, Zhang M M, Jin S Q, Li H B, Liu Y N, Zhou Z Y, Zhang F T, Zhang L P, Zhang S Q, Ma J X, Quan W, Wang M M, Zhang X, Hou J, Guan H T, Fu Y L, Wang W H. Wheat (Triticum aestivum L.) variety genuineness identification: SNP based method. Agricultural Industry Standards of the People’s Republic of China, 2021, NY/T 4021-2021. (in Chinese)
[4] 王凤格, 晋芳, 田红丽, 易红梅, 赵久然, 金石桥, 杨扬, 王蕊, 葛建镕, 支巨振, 赵建宗. 玉米品种真实性鉴定 SNP标记法. 中华人民共和国农业行业标准, 2021, NY/T 4022-2021.
Wang F G, Jin F, Tian H L, Yi H M, Zhao J R, Jin S Q, Yang Y, Wang R, Ge J R, Zhi J Z, Zhao J Z. Maize (Zea mays L.) variety genuineness identification: SNP based method. Agricultural Industry Standards of the People’s Republic of China, 2021, NY/T 4022-2021. (in Chinese)
[5] 魏兴华, 刘丰泽, 韩斌, 徐群, 冯旗, 赵妍, 支巨振, 周泽宇, 杨窑龙, 冯跃, 任雪贞, 王珊, 章孟臣. 水稻品种真实性鉴定 SNP标记法. 中华人民共和国农业行业标准, 2021, NY/T 2745-2021.
Wei X H, Liu F Z, Han B, Xu Q, Feng Q, Zhao Y, Zhi J Z, Zhou Z Y, Yang Y L, Feng Y, Ren X Z, Wang S, Zhang M C. Rice (Oryza sativa L.) variety genuineness identification: SNP based method. Agricultural Industry Standards of the People’s Republic of China, 2021, NY/T 2745-2021. (in Chinese)
[6] 田红丽, 张如养, 范亚明, 杨扬, 张云龙, 易红梅, 邢锦丰, 王凤格, 赵久然. Maize 6H-60K芯片在玉米实质性派生品种鉴定中的应用分析. 作物学报, 49: 2876-2885.
Tian H L, Zhang R Y, Fan Y M, Yang Y, Zhang Y L, Yi H M, Xing J F, Wang F G, Zhao J R. Application of maize 6H-60K chip in identification of maize essentially derived varieties. Acta Agron Sin, 49: 2876-2885. (in Chinese with English abstract)
[7] International Seed Testing Association. Method Validation Reports on Rules Proposals for the International Rules for Seed Testing 2023 Edition, Wallisellen, Switzerland, 2023.
[8] 李成明, 冯士雍, 张震坤, 姜健, 周崎, 丁文兴, 宋武元, 于振凡, 李政军, 肖惠, 刘建斌, 陈玉忠. 测量方法与结果的准确度(正确度与精密度) 第6部分:准确度值的实际应用. 中华人民共和国国家标准, 2009, GB/T 6379.6-2009.
Li C M, Feng S Y, Zhang Z K, Jiang J, Zhou Q, Ding W X, Song W Y, Yu Z F, Li Z J, Xiao H, Liu J B, Chen Y Z. Accuracy (trueness and precision) of measurement methods and results-Part 6: Use in practice of accuracy values. National Standards of the People’s Republic of China, 2009, GB/T 6379.6-2009. (in Chinese)
[9] 严威凯. 品种选育与评价的原理和方法评述. 作物学报, 2022, 48: 2137-2154.
doi: 10.3724/SP.J.1006.2022.11105
Yan W K. A critical review on the principles and procedures for cultivar development and evaluation. Acta Agron Sin, 2022, 48: 2137-2154. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2022.11105
[10] Xu N, Qiao Y, Zhao S, Yang X, Li J, Fok M. Optimizing the test locations and replicates in multi-environmental cotton registration trials in southern Xinjiang, China. Crop Sci, 2022, 62: 1866-1879.
doi: 10.1002/csc2.v62.5
[11] 许乃银, 李健. 利用GGE双标图划分长江流域棉花纤维品质生态区. 作物学报, 2014, 40: 891-898.
doi: 10.3724/SP.J.1006.2014.00891
Xu N Y, Li J. Ecological regionalization of cotton fiber quality based on GGE biplot in Yangtze River valley. Acta Agron Sin, 2014, 40: 891-898. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2014.00891
[12] Yan W. GGEbiplot: a Windows application for graphical analysis of multienvironment trial data and other types of two-way data. Agron J, 2001, 93: 1111-1118.
doi: 10.2134/agronj2001.9351111x
[13] 严威凯. 双标图分析在农作物品种多点试验中的应用. 作物学报, 2010, 36: 1805-1819.
doi: 10.3724/SP.J.1006.2010.01805
Yan W K. Optimal use of biplots in analysis of multi-location variety test data. Acta Agron Sin, 2010, 36: 1805-1819. (in Chinese with English abstract)
[14] 许乃银, 王扬, 王丹涛, 宁贺佳, 杨晓妮, 乔银桃. 棉花纤维质量指数的构建与WGT双标图分析. 作物学报, 2023, 49: 1262-1271.
Xu N Y, Wang Y, Wang D T, Ning H J, Yang X N, Qiao Y T. Construction of cotton fiber quality index and WGT biplot analysis. Acta Agron Sin, 2023, 49: 1262-1271. (in Chinese with English abstract)
[15] Jighly A, Hayden M, Daetwyler H. Integrating genomic selection with a genotype plus genotype × environment (GGE) model improves prediction accuracy and computational efficiency. Plant Cell Environ, 2021, 44: 3459-3470.
doi: 10.1111/pce.v44.10
[16] 于振凡, 冯士雍, 刘文, 姜健, 丁文兴, 王斗文, 肖惠, 李成明. 测量方法与结果的准确度(正确度与精密度) 第1部分:总则与定义. 中华人民共和国国家标准, 2004, GB/T 6379.1-2004.
Yu Z F, Feng S Y, Liu W, Jiang J, Ding W X, Wang D W, Xiao H, Li C M. Accuracy (trueness and precision) of measurement methods and results. Part 1: General principles and definitions. National Standards of the People’s Republic of China, 2004, GB/T 6379.1-2004. (in Chinese)
[17] 盖钧镒. 试验统计方法. 北京: 中国农业出版社, 2006.
Gai J Y. Methods of Experimental Statistics. Beijing: China Agriculture Press, 2006. (in Chinese)
[18] Wilson E B. Probable inference, the law of succession, and statistical inference. J Am Stat Assoc, 1927, 22: 209-212.
doi: 10.1080/01621459.1927.10502953
[19] Yan W, Kang M S, Ma B, Woods S, Cornelius P L. GGE biplot vs. AMMI analysis of genotype-by-environment data. Crop Sci, 2007, 47: 643-655.
doi: 10.2135/cropsci2006.06.0374
[20] Yan W. A systematic narration of some key concepts and procedures in plant breeding. Front Plant Sci, 2021, 12: 724517.
doi: 10.3389/fpls.2021.724517
[21] 刘丽华, 庞斌双, 刘阳娜, 李宏博, 王娜, 王拯, 赵昌平. 基于SNP标记的小麦高通量身份鉴定模式. 麦类作物学报, 2018, 38: 529-534.
Liu L H, Pang B S, Liu Y N, Li H B, Wang N, Wang Z, Zhao C P. High-throughput Identification mode for wheat varieties based on SNP markers. J Triticeae Crops, 2018, 38: 529-534. (in Chinese with English abstract)
[22] 王立新, 季伟, 李宏博, 葛玲玲, 信爱华, 王丽霞, 常利芳, 赵昌平. 以DNA位点纯合率评价小麦品种的一致性和稳定性. 作物学报, 2009, 35: 2197-2204.
doi: 10.3724/SP.J.1006.2009.02197
Wang L X, Ji W, Li H B, Ge L L, Xin A H, Wang L X, Chang L F, Zhao C P. Evaluating uniformity and stability of wheat cultivars based on ratio of homozygous DNA locus. Acta Agron Sin, 2009, 35: 2197-2204. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2009.02197
[23] 田红丽, 赵紫薇, 杨扬, 范亚明, 班秀丽, 易红梅, 杨洪明, 刘少荣, 高玉倩, 刘亚维, 王凤格. 290个吉林省审定玉米品种SSR-DNA指纹构建及遗传多样性分析. 作物学报, 2022, 48: 2994-3003.
doi: 10.3724/SP.J.1006.2022.13076
Tian H L, Zhao Z W, Yang Y, Fan Y M, Ban X L, Yi H M, Yang H M, Liu S R, Gao Y Q, Liu Y W, Wang F G. Construction of SSR-DNA fingerprints and genetic diversity analysis of 290 maize varieties approved in Jilin province, China. Acta Agron Sin, 2022, 48: 2994-3003. (in Chinese with English abstract)
[24] Xu N, Fok M, Zhang G, Li J, Zhou Z. The application of GGE biplot analysis for evaluating test locations and mega-environment investigation of cotton regional trials. J Integr Agric, 2014, 13: 1921-1933.
doi: 10.1016/S2095-3119(13)60656-5
[25] Yan W. Crop Variety Trials:Data Management and Analysis. New York: John Wiley & Sons, 2014.
[26] 许乃银, 李健. 棉花区试中品种多性状选择的理想试验环境鉴别. 作物学报, 2014, 40: 1936-1945.
doi: 10.3724/SP.J.1006.2014.01936
Xu N Y, Li J. Identification of ideal test environments for multiple traits selection in cotton regional trials. Acta Agron Sin, 2014, 40: 1936-1945. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2014.01936
[1] 王琼, 朱宇翔, 周密密, 张威, 张红梅, 陈新, 陈华涛, 崔晓艳. 大豆叶型性状全基因组关联分析与候选基因鉴定[J]. 作物学报, 2024, 50(3): 623-632.
[2] 邵扬, 郭延平, 周丙月, 张峰, 张兴民, 王玉萍. 蚕豆产量组分的基因型与环境互作及稳定性分析[J]. 作物学报, 2024, 50(1): 149-160.
[3] 杨斌, 乔玲, 赵佳佳, 武棒棒, 温宏伟, 张树伟, 郑兴卫, 郑军. 小麦旗叶叶绿素含量的QTL定位及验证[J]. 作物学报, 2023, 49(3): 744-754.
[4] 温明星, 肖进, 徐涛, 孙丽, 王宗宽, 王海燕, 王秀娥. 利用55K芯片进行小麦生育期相关性状的QTL定位及效应分析[J]. 作物学报, 2023, 49(12): 3188-3203.
[5] 刘丹, 周彩娥, 王晓婷, 吴启蒙, 张旭, 王琪琳, 曾庆东, 康振生, 韩德俊, 吴建辉. 利用集群分离分析结合高密度芯片快速定位小麦成株期抗条锈病基因YrC271[J]. 作物学报, 2022, 48(3): 553-564.
[6] 郑向华, 叶俊华, 程朝平, 魏兴华, 叶新福, 杨窑龙. 利用SNP标记进行水稻品种籼粳鉴定[J]. 作物学报, 2022, 48(2): 342-352.
[7] 张潇文, 李世姣, 张晓军, 李欣, 杨足君, 张树伟, 陈芳, 常利芳, 郭慧娟, 畅志坚, 乔麟轶. 小麦品系CH7034中耐盐QTL定位[J]. 作物学报, 2022, 48(10): 2654-2662.
[8] 张春, 赵小珍, 庞承珂, 彭门路, 王晓东, 陈锋, 张维, 陈松, 彭琦, 易斌, 孙程明, 张洁夫, 傅廷栋. 甘蓝型油菜千粒重全基因组关联分析[J]. 作物学报, 2021, 47(4): 650-659.
[9] 叶夕苗,程鑫,安聪聪,袁剑龙,余斌,文国宏,李高峰,程李香,王玉萍,张峰. 马铃薯产量组分的基因型与环境互作及稳定性[J]. 作物学报, 2020, 46(3): 354-364.
[10] 孙程明,陈锋,陈松,彭琦,张维,易斌,张洁夫,傅廷栋. 甘蓝型油菜每角粒数的全基因组关联分析[J]. 作物学报, 2020, 46(01): 147-153.
[11] 孙程明,陈松,彭琦,张维,易斌,张洁夫,傅廷栋. 甘蓝型油菜角果长度性状的全基因组关联分析[J]. 作物学报, 2019, 45(9): 1303-1310.
[12] 杨芳萍,刘金栋,郭莹,贾奥琳,闻伟鄂,巢凯翔,伍玲,岳维云,董亚超,夏先春. 普通小麦‘Holdfast’条锈病成株抗性QTL定位[J]. 作物学报, 2019, 45(12): 1832-1840.
[13] 白彦明,李龙,王绘艳,柳玉平,王景一,毛新国,昌小平,孙黛珍,景蕊莲. 蚂蚱麦和小白麦衍生系的遗传多样性分析[J]. 作物学报, 2019, 45(10): 1468-1477.
[14] 周萍萍,颜红海,彭远英. 基于高通量GBS-SNP标记的栽培燕麦六倍体起源研究[J]. 作物学报, 2019, 45(10): 1604-1612.
[15] 马岩松,刘章雄,文自翔,魏淑红,杨春明,王会才,杨春燕,卢为国,徐冉,张万海,吴纪安,胡国华,栾晓燕,付亚书,郭. 群体构成方式对大豆百粒重全基因组选择预测准确度的影响[J]. 作物学报, 2018, 44(01): 43-52.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .