欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (12): 3188-3203.doi: 10.3724/SP.J.1006.2023.31014

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

利用55K芯片进行小麦生育期相关性状的QTL定位及效应分析

温明星1,2,*(), 肖进2, 徐涛2, 孙丽2, 王宗宽2, 王海燕2, 王秀娥2   

  1. 1镇江市农业科学院, 江苏句容 212400
    2作物遗传与种质创新利用全国重点实验室 / 南京农业大学, 江苏南京 210095
  • 收稿日期:2023-02-26 接受日期:2023-05-24 出版日期:2023-12-12 网络出版日期:2023-05-31
  • 通讯作者: * 温明星, E-mail: wmxcell2007@163.com
  • 基金资助:
    作物遗传与种质创新国家重点实验室开放基金项目(ZW20202009)

Mapping and effect analysis of QTL for phenology traits in wheat using 55K chip technology

WEN Ming-Xing1,2,*(), XIAO Jin2, XU Tao2, SUN Li2, WANG Zong-Kuan2, WANG Hai-Yan2, WANG Xiu-E2   

  1. 1Zhenjiang Institute of Agricultural Science, Jurong 212400, Jiangsu, China
    2State Key Laboratory of Crop Genetics and Germplasm Enhancement / Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
  • Received:2023-02-26 Accepted:2023-05-24 Published:2023-12-12 Published online:2023-05-31
  • Contact: * E-mail: wmxcell2007@163.com
  • Supported by:
    Open Fund of the State Key Laboratory of Crop Genetics and Germplasm Enhancement(ZW20202009)

摘要:

生育期是决定小麦品种适应性的重要农艺性状, 探索其遗传机制及效应对于小麦品种的选育和推广具有重要意义。本研究以扬麦158和密穗小麦杂交构建的240个重组自交家系(recombinant inbred line, RIL)为材料, 于2~4个环境下对该群体主要生育期性状进行鉴定。利用已构建的高密度遗传图谱, 共检测到52个生育期相关QTL, 分布在2A、2D、3D、4B、4D、5A、5B、5D、6A、6B、7A、7B和7D染色体上。QJS/BS/HS/FS/MS.nau-5D.2QJS/BS/HS/FS/MS.nau-2D.1QJS/BS/HS/FS/MS.nau-7B.1均在多年被重复检测到, 分别解释4.56%~46.86%、1.32%~33.40%和2.37%~13.27%的表型变异。QBS/HS.nau-2A.3QHS/FS.nau-5B.2QFS.nau-2A.5QBS.nau-6A.2QJS.nau-4D.2QJS.nau-6A.3QBS.nau-2A.2QBS/HS.nau-6A.1QFS.nau-7A.2QMS.nau-3DQMS.nau-4D.1QMS.nau-6B.1是新发现的位点。效应分析表明, 生育期相关QTL的聚合能不同程度地缩短生育期, 可应用于培育早熟高产小麦品种。

关键词: 小麦, 生育期, QTL, SNP标记

Abstract:

Phenology is an important agronomic trait for common wheat, which has a great impact to explore its genetic mechanism and effect for wheat breeding and application. In this study, 240 recombinant inbred lines (RILs) derived from Yangmai 158 and Hiller were used to identify the phenology traits in 2-4 environments. A total of 52 QTL were detected on chromosomes 2A, 2D, 3D, 4B, 4D, 5A, 5B, 5D, 6A, 6B, 7A, 7B, and 7D by using the constructed high-density genetic map. QJS/BS/HS/FS/MS.nau-5D.2, QJS/BS/HS/FS/MS.nau-2D.1, and QJS/BS/HS/FS/MS.nau-7B.1 were detected for several years, which explained 4.56%-46.86%, 1.32%-33.40%, and 2.37%-13.27% of phenotypic variation, respectively. QBS/HS.nau-2A.3, QHS/FS.nau-5B.2, QFS.nau-2A.5, QBS.nau-6A.2, QJS.nau-4D.2, QJS.nau-6A.3, QBS.nau-2A.2, QBS/HS.nau-6A.1, QFS.nau-7A.2, QMS.nau-3D, QMS.nau-4D.1, and QMS.nau-6B.1 were new QTL. Pyramiding of multiple phenology loci with large effects or repeated is an effective approach to shorten the growth period in different degrees, which could be used to cultivate early-maturing and high-yield wheat varieties.

Key words: Triticum aestivum L., phenology traits, QTL, SNP markers

表1

主要生育期性状表型分析"

性状
Trait
环境
Environment
亲本Parent RIL群体RIL population 遗传力Heritability
扬麦158
Y158
密穗小麦HL 均值Mean 标准差SD 最大值Max. 最小值Min. 峰度Kurtosis 偏度Skewness 变异系数CV (%)
拔节期 Jointing stage (d) E2 114 119 114 5.59 125 106 -1.26 0.43 4.90 0.97
E3 94 97 96 3.08 106 89 0.75 0.60 3.21
BLUP 104 108 105 3.99 116 99 -0.83 0.50 3.80
孕穗期 Booting stage (d) E1 161 167 105 2.59 112 97 0.26 0.05 2.47 0.93
E2 143 149 147 4.42 157 137 -0.85 -0.07 3.01
E3 136 150 141 5.58 156 114 1.67 0.23 3.96
E4 141 149 147 3.34 158 139 0.79 0.66 2.28
BLUP 145 154 147 3.14 155 140 -0.35 0.21 2.14
抽穗期 Heading stage (d) E1 159 163 109 2.50 116 100 1.21 -0.07 2.29 0.79
E2 152 155 153 3.56 163 145 -0.35 0.50 2.33
E3 144 157 150 5.94 164 139 -0.89 -0.08 3.96
E4 146 157 154 4.12 167 145 -0.10 0.21 2.68
BLUP 149 158 146 3.98 157 138 -0.56 0.16 2.73
开花期 Flowering stage (d) E1 165 170 111 2.53 118 103 0.87 0.33 2.28 0.82
E2 157 164 161 3.21 169 153 -0.53 0.18 2.00
E3 155 166 161 4.84 173 147 -0.36 0.08 3.01
E4 156 167 164 3.46 174 155 -0.07 0.12 2.11
BLUP 159 167 155 3.42 164 147 -0.35 0.17 2.21
成熟期Maturity stage (d) E1 189 195 148 2.53 153 140 0.33 -0.44 1.71 0.75
E2 197 203 199 2.89 209 170 3.29 -3.44 1.45
E3 184 190 203 3.15 209 196 -0.76 -0.23 1.55
BLUP 189 195 190 2.33 197 179 1.92 -0.09 1.23

表2

主要生育期性状相关性分析"

性状
Trait
拔节期
Jointing stage
孕穗期
Booting stage
抽穗期
Heading stage
开花期
Flowering stage
孕穗期 Booting stage 0.724**
抽穗期 Heading stage 0.683** 0.948**
开花期 Flowering stage 0.701** 0.941** 0.971**
成熟期 Maturity stage 0.464** 0.682** 0.743** 0.757**

图1

主要生育期性状表型分析 数据为各性状在2~4个环境下的最优线性无偏估计值。"

表3

本研究定位的主要生育期性状QTL"

性状
Trait
QTL 环境
Environment
物理位置
Physical position (Mb)
标记区间
Marker interval
LOD值
LOD value
贡献率
PVE (%)
加性效应
Add.b
已知基因/QTL/标记
Known gene/QTL/Marker
拔节期
Jointing stage
QJS.nau-2D.1 E2 32.97‒35.02 AX-111096297‒AX-109422526 4.33 2.21 ‒0.87 PPD-D1[8]
BLUP 7.18 3.80 ‒0.82
E3 35.02‒37.27 AX-109422526‒AX-110452779 6.73 6.02 ‒0.82
QJS.nau-2D.3 E2 414.99‒422.88 AX-110558888‒AX-110558245 4.11 2.00 ‒0.83 qHd-2D.1[27]
BLUP 3.93 1.92 ‒0.58
QJS.nau-5B.1 E3 572.17‒575.24 AX-110961703‒AX-110490429 13.23 11.75 1.15 PhyC[28]
BLUP 22.19 13.49 1.55
QJS.nau-5D.2 E2 468.16‒469.56 AX-108861262‒AX-109428027 55.03 46.86 ‒4.00 PhyC[28]
E3 21.62 21.08 ‒1.54
BLUP 51.52 42.61 ‒2.74
QJS.nau-7B.1 E2 9.75‒14.76 AX-111090034‒AX-111635682 4.62 2.37 ‒0.90 TaVRN3-7B[7]
E3 3.15 2.49 ‒0.53
BLUP 7.34‒9.75 AX-111636399‒AX-111090034 6.31 3.22 ‒0.75
孕穗期
Booting stage
QBS.nau-2A.3 E3 611.88‒666.62 AX-109283226‒AX-110464869 2.77 2.33 ‒0.83
E4 611.71‒611.82 AX-110711634‒AX-108837102 2.98 2.52 ‒0.53
BLUP 5.23 1.84 ‒0.54
QBS.nau-2D.1 E1 32.97‒35.02 AX-111096297‒AX-109422526 19.62 22.89 ‒1.22 PPD-D1[8]
E2 26.47 18.09 ‒1.99
E3 25.64 26.29 ‒2.77
E4 28.45 31.32 ‒1.87
BLUP 34.49 16.42 ‒1.60
QBS.nau-5D.1 E3 449.29‒451.17 AX-109855976‒AX-109453419 4.66 3.81 ‒1.06 PhyC[28]
BLUP 453.23‒456.31 AX-108843804‒AX-109042166 6.53 2.39 ‒0.61
QBS.nau-5D.2 E1 465.11‒465.86 AX-110717870‒AX-111262507 7.95 8.00 ‒0.72 PhyC[28]
E3 7.21 6.02 ‒1.33
E2 468.16‒469.56 AX-108861262‒AX-109428027 34.95 26.52 ‒2.42
E4 6.61 5.91 ‒0.81
BLUP 14.40 5.67 ‒0.94
QBS.nau-7A.3 E3 54.90‒55.33 AX-111665118‒AX-111639706 4.30 3.48 ‒1.01 VRN-A3/FT-A1[7]
E1 66.18‒68.32 AX-110952157‒AX-108820762 3.38 3.27 ‒0.46
E2 3.01 1.60 ‒0.59
E4 4.51 3.93 ‒0.67
BLUP 4.69 1.65 ‒0.51
QBS.nau-7B.1 E1 9.75‒14.76 AX-111090034‒AX-111635682 8.72 8.84 ‒0.76 TaVRN3-7B[7]
E2 16.77 10.17 ‒1.49
E3 12.99 11.45 ‒1.83
E4 10.19 9.13 ‒1.01
BLUP 7.34‒9.75 AX-111636399‒AX-111090034 18.04 7.32 ‒1.07
QBS.nau-7D.1 E1 63.48‒66.54 AX-108882010‒AX-111061288 3.18 3.14 0.45 VRN-D3/FT-D1[7]
E2 6.76 4.03 0.94
E4 6.94 6.58 0.86
BLUP 7.74 3.10 0.69
抽穗期
Heading stage
QHS.nau-2A.3 E4 611.71‒611.82 AX-110711634‒AX-108837102 3.78 2.83 ‒0.69
BLUP 3.24 1.86 ‒0.55
QHS.nau-2D.1 E1 32.97‒35.02 AX-111096297‒AX-109422526 26.07 27.08 ‒1.33 PPD-D1[8]
E2 23.33 17.29 ‒1.50
E3 30.21 28.27 ‒3.14
E4 33.09 33.40 ‒2.34
BLUP 36.68 29.45 ‒2.18















QHS.nau-5B.2 E1 593.48‒595.05 AX-108736770‒AX-109321892 3.17 2.60 0.42
E3 3.79 2.77 0.99
BLUP 4.24 2.52 0.64
QHS.nau-5D.2 E1 465.11‒465.86 AX-110717870‒AX-111262507 5.45 4.56 ‒0.55 PhyC[28]
E2 28.25 21.59 ‒1.69
E3 20.21 17.02 ‒2.45
BLUP 21.59 14.79 ‒1.56
E4 463.25‒465.11 AX-109924594‒AX-110717870 8.56 7.30 ‒1.10
QHS.nau-7A.3 E1 66.18‒68.32 AX-110952157‒AX-108820762 4.54 3.79 ‒0.50 VRN-A3/FT-A1[7]
E2 6.70 4.11 ‒0.74
E3 4.37 3.14 ‒1.05
E4 4.37 3.40 ‒0.75
BLUP 6.66 3.99 ‒0.81
QHS.nau-7B.1 E1 9.75‒14.76 AX-111090034‒AX-111635682 11.26 9.98 ‒0.81 TaVRN3-7B[7]
E2 19.19 13.27 ‒1.32
E3 11.96 9.24 ‒1.79
E4 13.47 10.95 ‒1.34
BLUP 18.40 12.17 ‒1.40
QHS.nau-7D.1 E1 63.48‒66.54 AX-108882010‒AX-111061288 5.44 4.63 0.55 VRN-D3/FT-D1[7]
E2 7.92 5.27 0.83
E3 4.25 3.48 1.10
E4 7.09 5.84 0.98
BLUP 9.92 6.58 1.03
开花期
Flowering stage
QFS.nau-2A.5 E1 557.00‒568.31 AX-111140902‒AX-108927651 3.44 3.47 ‒0.46
BLUP 3.08 2.01 ‒0.46
QFS.nau-2D.1 E1 32.97‒35.02 AX-111096297‒AX-109422526 17.27 20.19 ‒1.10 PPD-D1[8]
E2 27.27 16.10 ‒1.29
E3 26.25 26.64 ‒2.46
E4 32.56 32.00 ‒1.91
BLUP 33.93 28.29 ‒1.76
QFS.nau-2D.2 E1 370.12‒406.29 AX-109417243‒AX-110515536 3.87 3.90 ‒0.49 C[24]
E4 3.25 2.37 ‒0.52
QFS.nau-2D.3 E2 414.99‒422.88 AX-110558888‒AX-110558245 5.37 2.55 ‒0.51 qHd-2D.1[27]
E3 2.63 2.11 ‒0.69
BLUP 4.72 2.98 ‒0.57
QFS.nau-5B.2 E1 593.48‒595.05 AX-108736770‒AX-109321892 3.02 3.03 0.43
E3 5.44 4.53 1.02
BLUP 6.32 4.02 0.67
QFS.nau-5D.2 E1 465.11‒465.86 AX-110717870‒AX-111262507 4.58 4.59 ‒0.53 PhyC[28]
E3 14.96 13.34 ‒1.75
BLUP 19.73 14.11 ‒1.25
E4 463.25‒465.11 AX-109924594‒AX-110717870 10.13 8.20 ‒0.97
E2 468.16‒469.56 AX-108861262‒AX-109428027 37.59 25.12 ‒1.62
QFS.nau-7A.3 E1 66.18‒68.32 AX-110952157‒AX-108820762 4.67 4.67 ‒0.54 VRN-A3/FT-A1[7]
E2 11.46 5.65 ‒0.77
E3 4.14 3.33 ‒0.88
E4 5.08 3.86 ‒0.67
BLUP 6.80 4.34 ‒0.69
QFS.nau-7B.1 E1 9.75‒14.76 AX-111090034‒AX-111635682 8.22 8.89 ‒0.73 TaVRN3-7B[7]
E2 16.43 8.47 ‒0.94
E3 8.44 7.03 ‒1.26
E4 11.54 9.00 ‒1.02
BLUP 14.09 9.54 ‒1.02
QFS.nau-7D.1 E1 63.48‒66.54 AX-108882010‒AX-111061288 5.14 5.22 0.56 VRN-D3/FT-D1[7]
E2 8.20 3.95 0.64
E3 6.48 5.66 1.14
E4 10.62 8.35 0.98
BLUP 10.90 7.24 0.89
成熟期
Maturity stage
QMS.nau-2D.1 E1 32.97‒35.02 AX-111096297‒AX-109422526 10.41 16.34 ‒1.06 PPD-D1[8]
E3 15.62 18.67 ‒1.42
BLUP 18.79 21.34 ‒1.16
E2 35.02‒37.27 AX-109422526‒AX-110452779 6.52 1.32 ‒0.86
QMS.nau-4B E3 31.88‒40.90 AX-94434500‒AX-109850058 5.39 5.96 ‒0.80 Rht-B1/Rht1[35]
BLUP 4.20 4.23 ‒0.51
QMS.nau-5D.2 E3 465.11‒465.86 AX-110717870‒AX-111262507 5.20 5.45 ‒0.77 PhyC[28]
BLUP 463.25‒465.11 AX-109924594‒AX-110717870 5.63 6.22 ‒0.63
QMS.nau-7B.1 E1 7.34‒9.75 AX-111636399‒AX-111090034 2.87 4.07 ‒0.53 TaVRN3-7B[7]
E2 5.93‒7.34 AX-110953411‒AX-111636399 41.07 11.94 ‒2.60
E2 9.75‒14.76 AX-111090034‒AX-111635682 56.28 19.83 ‒3.35
E3 7.27 7.80 ‒0.92
BLUP 10.23 10.33 ‒0.81

附表1

本研究定位的主要生育期性状QTL"

性状
Trait
QTL 环境
Environ.
物理位置
Physical position (Mb)
标记区间
Marker interval
LOD值
LOD value
贡献率
PVE (%)
加性效应Add.b 已知基因/QTL/标记
Known gene/QTL/Marker
拔节期
Jointing stage
QJS.nau-2A.1 E3 90.93-120.71 AX-108751507-AX-108800384 3.36 2.68 0.55 TaSuSy2[26]
QJS.nau-4D.2 E3 424.86-426.85 AX-110432863-AX-108781235 6.85 5.69 −0.80
QJS.nau-6A.3 E3 559.17-562.47 AX-109456124-AX-111131762 4.74 3.93 0.67
QJS.nau-7B.2 E2 192.97-240.90 AX-109966136-AX-111699859 7.29 3.71 1.12 TaSEP3-B1[29]
孕穗期
Booting stage
QBS.nau-2A.2 E1 163.10-172.02 AX-110617782-AX-109043229 3.61 3.59 −0.48
QBS.nau-5A.2 E1 396.22-396.68 AX-108757456-AX-110913394 2.87 2.78 −0.42 QFlt.dms-5A.2[30]
QBS.nau-6A.1 E1 6.27-12.23 AX-109498898-AX-110492549 2.78 2.78 −0.43
QBS.nau-6A.2 BLUP 445.61-446.73 AX-109396341-AX-111727948 51.65 29.47 −2.14
QBS.nau-6B.2 E3 705.64-707.18 AX-111502013-AX-89558700 3.07 2.61 −0.88 Xwmc105[31]
抽穗期
Heading stage
QHS.nau-6A.1 E1 6.27-12.23 AX-109498898-AX-110492549 2.75 2.33 −0.40
QHS.nau-7B.3 E2 553.19-558.93 AX-109902366-AX-108804002 3.42 2.03 0.52 QHD-7B[32]
QHS.nau-7D.2 E4 115.54-122.84 AX-111124984-AX-108895252 3.12 2.28 0.62 TaVRT-2[33]
开花期Flowering stage QFS.nau-5A.1 E2 21.42-26.14 AX-110033504-AX-108986214 3.15 1.47 −0.39 QHD-5A.3[32]
QFS.nau-7A.1 E2 25.54-25.85 AX-111504531-AX-110743905 5.06 2.36 −0.49 QMat.tam-7A[34]
QFS.nau-7A.2 E2 34.72-41.64 AX-110109325-AX-110429273 4.28 2.40 0.50
成熟期
Maturity stage
QMS.nau-3D E3 553.36-561.17 AX-108730721-AX-110362152 3.48 3.65 −0.63
QMS.nau-4D.1 E3 112.79-119.79 AX-110358075-AX-109071036 3.20 3.29 −0.60
QMS.nau-5D.1 E2 453.23-456.31 AX-108843804-AX-109042166 3.59 0.71 −0.63 PhyC[28]
QMS.nau-6B.1 E1 22.27-25.43 AX-109439077-AX-111106671 2.54 3.76 0.51
QMS.nau-7D.1 BLUP 63.48-66.54 AX-108882010-AX-111061288 2.80 2.92 0.43 VRN-D3/FT-D1[7]

表4

同时调控2个及以上性状的QTL簇"

染色体Chromosome QTL名称
QTL name
物理位置
Physical position
(Mb)
平均LOD值
Average LOD value
平均贡献率
Average R2 value (%)
2A QBS.nau-2A.3, QHS.nau-2A.3 611.71-611.82 3.60 2.28
2D QJS.nau-2D.1, QBS.nau-2D.1, QHS.nau-2D.1, QFS.nau-2D.1, QMS.nau-2D.1 32.97-35.02 22.31 20.16
2D QJS.nau-2D.3, QFS.nau-2D.3 414.99-422.88 4.15 2.31
5B QHS.nau-5B.2, QFS.nau-5B.2 593.48-595.05 4.33 3.24
5D QBS.nau-5D.1, QMS.nau-5D.1 449.29-456.31 4.93 2.30
5D QJS.nau-5D.2, QBS.nau-5D.2, QHS.nau-5D.2, QFS.nau-5D.2, QMS.nau-5D.2 463.25-469.56 19.06 15.25
6A QBS.nau-6A.1, QHS.nau-6A.1 6.27-12.23 2.77 2.55
7A QBS.nau-7A.3, QHS.nau-7A.3, QFS.nau-7A.3 66.18-68.32 5.25 3.61
7B QJS.nau-7B.1, QBS.nau-7B.1, QHS.nau-7B.1, QFS.nau-7B.1, QMS.nau-7B.1 7.34-14.76 14.41 9.02
7D QBS.nau-7D.1, QHS.nau-7D.1, QFS.nau-7D.1, QMS.nau-7D.1 63.48-66.54 6.89 5.07

图2

2D、5D和7B染色体上定位的生育期性状QTL"

图3

生育期相关优异等位基因在RIL群体中的遗传效应分析 JS、BS、HS、FS和MS分别表示拔节期、孕穗期、抽穗期、开花期和成熟期。小写字母表示在0.05概率水平差异显著。"

[1] 王一钊, 刘玉秀, 孟天琪, 魏仕, 张正茂. 小麦温光发育及相关基因研究进展. 麦类作物学报, 2023, 43: 14-25.
Wang Y Z, Liu Y X, Meng T Q, Wei S, Zhang Z M. Research progress on thermo-photoperiod development and related genes in wheat. J Triticeae Crops, 2023, 43: 14-25. (in Chinese with English abstract)
[2] Worland A J. The influence of flowering time genes on environmental adaptability in European wheats. Euphytica, 1996, 89: 49-57.
doi: 10.1007/BF00015718
[3] Worland A J, Borner A, Korzun V, Li W M, Petrovic S, Sayers E J. The influence of photoperiod genes on the adaptability of European winter wheats. Euphytica, 1998, 100: 385-394.
doi: 10.1023/A:1018327700985
[4] Snape J W, Butterworth K, Whitechurch E, Worland A J. Waiting for fine times: genetics of flowering time in wheat. Euphytica, 2001, 119: 185-190.
doi: 10.1023/A:1017594422176
[5] Yan L L, Loukoianov A, Tranquilli G, Helguera M, Fahima T, Dubcivsky J. Positional cloning of the wheat vernalization gene VRN1. Proc Natl Acad Sci USA, 2003, 100: 6263-6268.
doi: 10.1073/pnas.0937399100 pmid: 12730378
[6] Yan L L, Loukoianov A, Blechl A, Tranquilli G, Ramakrishna W, SanMiguel P, Bennetzen J L, Echenique V, Dubcovsky J. The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science, 2004, 303: 1640-1644.
doi: 10.1126/science.1094305
[7] Yan L L, Fu D, Li C, Blechl A, Tranquilli G, Bonafede M, Sanchez A, Valarik M, Yasuda S, Dubcovsky J. The wheat and barley vernalization gene VRN3 is an orthologue of FT. Proc Natl Acad Sci USA, 2006, 103: 19581-19586.
doi: 10.1073/pnas.0607142103 pmid: 17158798
[8] Beales J, Turner A, Griffiths S, Snape J W, Laurie D A. A Pseudo-response regulator is mis expressed in the photoperiod insensitive Ppd-D1a mutant of wheat (Triticum aestivum L.). Theor Appl Genet, 2007, 115: 721-733.
doi: 10.1007/s00122-007-0603-4 pmid: 17634915
[9] Wilhelm E P, Turner A S, Laurie D A. Photoperiod insensitive Ppd-A1a mutation in tetraploid wheat (Triticum aestivum L.). Theor Appl Genet, 2009, 118: 285-294.
doi: 10.1007/s00122-008-0898-9 pmid: 18839130
[10] Hoodgendoorn J. A reciprocal F1 monosomic analysis of the genetic control of time of ear emergence, number of leaves and number of spikelets in wheat (Triticum aestivum L.). Euphytica, 1985, 34: 545-558.
doi: 10.1007/BF00022954
[11] Scarth R, Law C N. The location of the photoperiod gene, Ppd2 and an additional genetic factor for ear emergence time on chromosome 2B of wheat. Heredity, 1983, 51: 607-619.
doi: 10.1038/hdy.1983.73
[12] Zemetra R S, Morris R, Schmidt J W. Gene location for heading date using reciprocal chromosome substitutions in winter wheat. Crop Sci, 1986, 26: 531-533.
doi: 10.2135/cropsci1986.0011183X002600030020x
[13] 宋彦霞, 景蕊莲, 霍纳新, 任正隆, 贾继增. 普通小麦(T. aestivum L.)不同作图群体抽穗期QTL分析. 中国农业科学, 2006, 39: 2186-2193.
Song Y X, Jing R L, Huo N X, Ren Z L, Jia J Z. Detection of QTLs for heading in common wheat (T. aestivum L.) using different population. Sci Agric Sin, 2006, 39: 2186-2193. (in Chinese with English abstract)
[14] 茹京娜, 于洋, 董凡凡, 吕欣迪, 曹译文, 纪志芳, 陈梦楠, 史雨刚, 王曙光, 孙黛珍. 小麦抽穗期QTL及其与环境的互作. 麦类作物学报, 2014, 34: 1185-1190.
Ru J N, Yu Y, Dong F F, Lyu X D, Cao Y W, Ji Z F, Chen M N, Shi Y G, Wang S G, Sun D Z. Analysis of QTL for heading date and interaction effects with environments in wheat. J Triticeae Crops, 2014, 34: 1185-1190. (in Chinese with English abstract)
[15] 王克森, 董爽爽, 李法计, 郭军, 台述强, 王利彬, 程敦公, 穆平, 刘建军, 李豪圣, 赵振东, 曹新有, 张玉梅. 小麦抽穗和开花期相关QTL定位与分析. 山东农业科学, 2020, 52(1): 17-23.
Wang K S, Dong S S, Li F J, Guo J, Tai S Q, Wang L B, Cheng D G, Mu P, Liu J J, Li H S, Zhao Z D, Cao X Y, Zhang Y M. QTL mapping and analysis of heading time and flowering time of wheat. Shandong Agric Sci, 2020, 52(1): 17-23. (in Chinese with English abstract)
[16] Chen Z Y, Cheng X J, Chai L L, Wang Z H, Du D J, Wang Z H, Bian R L, Zhao A J, Xin M M, Guo W L, Hu Z R, Peng H R, Yao Y Y, Sun Q X, Ni Z F. Pleiotropic QTL influencing spikelet number and heading date in common wheat (Triticum aestivum L.). Theor Appl Genet, 2020, 133: 1825-1838.
doi: 10.1007/s00122-020-03556-6
[17] 高德荣, 王慧, 刘巧, 朱冬梅, 张晓, 吕国锋, 张晓祥, 江伟, 李曼. 迟播早熟高产小麦新品种德选育. 中国农业科学, 2019, 52: 2379-2390.
doi: 10.3864/j.issn.0578-1752.2019.14.001
Gao D R, Wang H, Liu Q, Zhu D M, Zhang X, Lyu G F, Zhang X X, Jiang W, Li M. Breeding of new wheat varieties with early maturity and high yield under late sowing. Sci Agric Sin, 2019, 52: 2379-2390. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2019.14.001
[18] 董玉琛. 小麦的基因源. 麦类作物学报, 2000, 20: 78-81.
Dong Y C. Genepools of common on wheat. J Triticeae Crops, 2000, 20: 78-81. (in Chinese with English abstract)
[19] 张晓, 张伯桥, 江伟, 吕国锋, 张晓祥, 李曼, 高德荣. 扬麦系列品种品质性状相关基因的分子检测. 中国农业科学, 2015, 48: 3779-3793.
doi: 10.3864/j.issn.0578-1752.2015.19.001
Zhang X, Zhang B Q, Jiang W, Lyu G F, Zhang X X, Li M, Gao D R. Molecular detection for quality traits-related genes in Yangmai series wheat cultivars. Sci Agric Sin, 2015, 48: 3779-3793. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2015.19.001
[20] 姜朋, 何漪, 张旭, 吴磊, 张平平, 马鸿翔. 宁麦9号与扬麦158株高及其构成因素的遗传解析. 作物学报, 2020, 46: 858-868.
doi: 10.3724/SP.J.1006.2020.91063
Jiang P, He Y, Zhang X, Wu L, Zhang P P, Ma H X. Genetic analysis of plant height and its commonents for wheat (Triticum aestivum L.) cultivars Ningmai 9 and Yangmai 158. Acta Agron Sin, 2020, 46: 858-868. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2020.91063
[21] 姜朋, 张旭, 吴磊, 何漪, 张平平, 马鸿翔, 孔令让. 宁麦9号/扬麦158重组自交系群体产量性状的遗传解析. 作物学报, 2021, 47: 869-881.
doi: 10.3724/SP.J.1006.2021.01051
Jiang P, Zhang X, Wu L, He Y, Zhang P P, Ma H X, Kong L R. Genetic analysis for yield related traits of wheat (Triticum aestivum L.) based on a recombinant inbred line population from Ningmai 9 and Yangmai 158. Acta Agron Sin, 2021, 47: 869-881. (in Chinese with English abstract)
[22] 何贤芳, 王晓波, 司红起, 夏云祥, 马传喜. STS标记在扬麦158×淮麦18 F4群体中的应用及其与PPO活性的关系. 分子植物育种, 2008, 6: 499-503.
He X F, Wang X B, Si H Q, Xia Y X, Ma C X. The application of STS marker in Yangmai 158 × Huaimai 18 F4 separating plant lines and its relations with PPO activity. Mol Plant Breed, 2008, 6: 499-503. (in Chinese with English abstract)
[23] 吴纪中, 蔡士宾, 颜伟, 任丽娟, 陈怀谷, 吴小有, 张仙义. ARz×扬麦158群体对小麦赤霉病抗性的QTL分析. 江苏农业学报, 2006, 22: 339-345.
Wu J Z, Cai S B, Yan W, Ren L J, Chen H G, Wu X Y, Zhang X Y. QTL analysis of fusarium head blight resistance (FHB) in ARz×Yangmai 158 population. Jiangsu J Agric Sci, 2006, 22: 339-345. (in Chinese with English abstract)
[24] Wen M X, Su J X, Jiao C Z, Zhang X, Xu T, Wang T, Liu X X, Wang Z K, Sun L, Yuan C X, Wang H Y, Wang X E, Xiao J. Pleiotropic effect of the compactum gene and its combined effects with other loci for spike and grain-related traits in wheat. Plants, 2022, 11: 01837.
doi: 10.3390/plants11141837
[25] Zhu T, Wang L, Rimbert H, Rodriguez J C, Deal K R, Deolivera R, Choulet F, Keeble-Gagnere G, Tibbits J, Rogers J, Eversole K, Appels R, Guo Y Q, Mascher M, Dvorak J, Luo M C. Optical maps refine the bread wheat Triticum aestivum cv. Chinese Spring genome assembly. Plant J, 2021, 107: 303-314.
doi: 10.1111/tpj.v107.1
[26] Ma S W, Wang W, Wu J H, Guo W L, Chen Y M, Li G W, Wang Y P, Shi W M, Xia G M, Fu D L, Kang Z S, Ni F. WheatOmics: a platform combining multiple omics data to accelerate functional genomics studies in wheat. Mol Plant, 2021, 14: 1965-1968.
doi: 10.1016/j.molp.2021.10.006 pmid: 34715393
[27] Fan X L, Cui F, Ji J, Zhang W, Zhao X Q, Liu J J, Meng D Y, Tong Y P, Wang T, Li J M. Dissection of pleiotropic QTL regions controlling wheat spike characteristics under different nitrogen treatments using traditional and conditional QTL mapping. Front Plant Sci, 2019, 10: 187.
doi: 10.3389/fpls.2019.00187 pmid: 30863417
[28] Mizuno N, Nitta M, Sato K, Nasuda S. A wheat homologue of PHYTOCLOCK 1 is a candidate gene conferring the early heading phenotype to einkorn wheat. Genes Genet Syst, 2012, 87: 357-367.
doi: 10.1266/ggs.87.357
[29] Zhang L, Zhang H, Qiao L Y, Miao L F, Yan D, Liu P, Zhao G Y, Jia J Z, Gao L F. Wheat MADS-box gene TaSEP3-D1 negatively regulates heading date. Crop J, 2021, 9: 1115-1123.
doi: 10.1016/j.cj.2020.12.007
[30] Zou J, Semagn K, Chen H, Iqbal M, Asif M, Ndiaye A, Navabi A, Perez-lara E, Pozniak C, Yang R C, Graf R J, Randhawa H R, Spaner D. Mapping of QTLs associated with resistance to common bunt, tan spot, leaf rust, and stripe rust in a spring wheat population. Mol Breed, 2017, 37: 144.
doi: 10.1007/s11032-017-0746-1
[31] Griffiths S, Simmonds J, Leverington M, Wang Y K, Fish L, Sayers L, Alibert L, Orford S, Wingen L, Herry L, Faurer S, Laurie D, Biham L, Snape J. Meta-QTL analysis of the genetic control of ear emergence in elite European winter wheat germplasm. Theor Appl Genet, 2009, 119: 383-395.
doi: 10.1007/s00122-009-1046-x pmid: 19430758
[32] Hu J M, Wang X Q, Zhang G X, Jiang P, Chen W Y, Hao Y C, Ma X, Xu S S, Jia J Z, Kong L R, Wang H W. QTL mapping for yield-related traits in wheat based on four RIL population. Theor Appl Genet, 2020, 133: 917-933.
doi: 10.1007/s00122-019-03515-w
[33] Kane N A, Danyluk J, Tardif G, Quellet F, Laliberte J F, Limin A E, Fowler B, Sarhan F. TaVRT-2, a member of the StMADS-11 clade of flowering repressors, is regulated by vernalization and photoperiod in wheat. Plant Physiol, 2005, 138: 2354-2363.
doi: 10.1104/pp.105.061762 pmid: 16024692
[34] Mason R E, Hays D B, Mondal S, Ibrahim A M, Basnet B. QTL for yield, yield components and canopy temperature depression in wheat under late sown field conditions. Euphytica, 2013, 194: 243-259.
doi: 10.1007/s10681-013-0951-x
[35] Peng J, Richards D E, Hartley N M, Murphy G P, Devos K M, Flintham J E, Beales J, Fish L J, Worland A J, Pelica F, Sudhakar D, Christou P, Snape J W, Gale M D, Harberd N P. ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature, 1999, 400: 256-261.
doi: 10.1038/22307
[36] Wang R X, Hai L, Zhang X Y, You G X, Yan C S, Xiao S H. QTL mapping for grain filling rate and yield-related traits in RILs of the Chinese winter wheat population Heshangmai × Yu 8679. Theor Appl Genet, 2009, 118: 313-325.
doi: 10.1007/s00122-008-0901-5 pmid: 18853131
[37] Thambugala D, Brule-Babel A L, Blackwell B A, Fedak G, Foster A J, MacEachern D, Gillbert J, Henriquez M A, Martin R A, McCallum B D, Spaner D, Iqbal M, Pozniak C J, Diaye A N, McCartney C. Genetic analyses of native Fusarium head blight resistance in two spring wheat populations identifies QTL near the B1, Ppd-D1, Rht-1, Vrn-1, Fhb1, Fhb2, and Fhb5 loci. Theor Appl Genet, 2020, 133: 2775-2796.
doi: 10.1007/s00122-020-03631-y pmid: 32556394
[38] Addison C K, Mason R E, Brown-Guedira G, Guedira M, Hao Y F, Miller R G, Subramanian N, Lozada D N, Acuna A, Arguello M N, Johnson J W, Ibrahim A M H, Sutton R, Harrison S A. QTL and major genes influencing grain yield potential in soft red winter wheat adapted to the southern United States. Euphytica, 2016, 209: 665-677.
doi: 10.1007/s10681-016-1650-1
[39] Fatima S, Chaudhari S K, Akhtar S, Amjad M S, Akbar M, Iqbai M S, Arshad M, Shehzad T. Mapping QTLs for yield and yield components under drought stress in bread wheat (Triticum aestivum L.). Appl Ecol Environ Res, 2018, 16: 4431-4453.
doi: 10.15666/aeer
[40] Zhuang M J, Li C N, Wang J Y, Mao X G, Li L, Yin J, Du Y, Wang X, Jing R L. The wheat SHORT ROOT LENGTH 1 gene TaSRL1 controls root length in an auxin-dependent pathway. J Exp Bot, 2021, 72: 6977-6989.
doi: 10.1093/jxb/erab357
[41] Singh K, Saini D K, Saripalli G, Batra R, Gautam T, Singh R, Pal S, Kumar M, Jan I, Singh S, Kumar A, Sharma H, Chaudhary J, Kumar K, Kumar S, Singh V K, Singh V P, Kumar D, Sharma S, Kumar S, Kumar R, Sharma S, Gaurav S S, Sharma P K, Balyan H S, Gupta P K. Wheat QTLdb V2.0: a supplement to the database for wheat QTL. Mol Breed, 2022, 42: 56.
[42] 胡文静, 张勇, 陆成彬, 王凤菊, 刘金栋, 蒋正宁, 王金平, 朱展望, 徐小婷, 郝元峰, 何中虎, 高德荣. 小麦品种扬麦16赤霉病抗扩展QTL定位及分析. 作物学报, 2020, 46: 157-165.
doi: 10.3724/SP.J.1006.2020.91048
Hu W J, Zhang Y, Lu C B, Wang F J, Liu J D, Jiang Z N, Wang J P, Zhu Z W, Xu X T, Hao Y F, He Z H, Gao D R. Mapping and genetic analysis of QTLs for Fusarium head blight reistance to disease spread in Yangmai 16. Acta Agron Sin, 2020, 46: 157-165. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2020.91048
[43] Chen Z Y, Cheng X J, Chai L L, Wang Z H, Bian R L, Li J, Zhao A J, Xin M M, Guo W L, Hu Z R, Peng H R, Yao Y Y, Sun Q X, Ni Z F. Dissection of genetic factors underlying grain size and fine mapping of QTgw.cau-7D in common wheat (Triticum aestivum L.). Theor Appl Genet, 2020, 133: 149-162.
doi: 10.1007/s00122-019-03447-5
[44] Lin Y, Jiang X J, Hu H Y, Zhou K Y, Wang Q, Yu S F, Yang X L, Wang Z Q, Wu F K, Liu S H, Li C X, Deng M, Ma J, Chen G D, Wei Y M, Zheng Y L, Liu Y X. QTL mapping for grain number per spikelet in wheat using a high-density genetic map. Crop J, 2021, 9: 1108-1114.
doi: 10.1016/j.cj.2020.12.006
[1] 李俣佳, 许豪, 于士男, 唐建卫, 李巧云, 高艳, 郑继周, 董纯豪, 袁雨豪, 郑天存, 殷贵鸿. 小麦骨干亲本周8425B抗条锈病优异基因在其衍生品种中的遗传解析[J]. 作物学报, 2024, 50(1): 16-31.
[2] 张丽华, 张经廷, 董志强, 侯万彬, 翟立超, 姚艳荣, 吕丽华, 赵一安, 贾秀领. 不同降水年型水分运筹对冬小麦产量及其构成的影响[J]. 作物学报, 2023, 49(9): 2539-2551.
[3] 张刁亮, 杨昭, 胡发龙, 殷文, 柴强, 樊志龙. 复种绿肥在不同灌水水平下对小麦籽粒品质和产量的影响[J]. 作物学报, 2023, 49(9): 2572-2581.
[4] 黄莉, 陈伟刚, 李威涛, 喻博伦, 郭建斌, 周小静, 罗怀勇, 刘念, 雷永, 廖伯寿, 姜慧芳. 花生根部结瘤性状QTL定位[J]. 作物学报, 2023, 49(8): 2097-2104.
[5] 苏在兴, 黄忠勤, 高闰飞, 朱雪成, 王波, 常勇, 李小珊, 丁震乾, 易媛. 小麦矮秆突变体Xu1801的鉴定及其矮化效应分析[J]. 作物学报, 2023, 49(8): 2133-2143.
[6] 李星, 杨会, 骆璐, 李华东, 张昆, 张秀荣, 李玉颖, 于海洋, 王天宇, 刘佳琪, 王瑶, 刘风珍, 万勇善. 栽培种花生单仁重QTL定位分析[J]. 作物学报, 2023, 49(8): 2160-2170.
[7] 杨晓慧, 王碧胜, 孙筱璐, 侯靳锦, 徐梦杰, 王志军, 房全孝. 冬小麦对水分胁迫响应的模型模拟与节水滴灌制度优化[J]. 作物学报, 2023, 49(8): 2196-2209.
[8] 李宇星, 马亮亮, 张月, 秦博雅, 张文静, 马尚宇, 黄正来, 樊永惠. 外源海藻糖对灌浆期高温胁迫下小麦旗叶生理特性和产量的影响[J]. 作物学报, 2023, 49(8): 2210-2224.
[9] 刘琼, 杨洪坤, 陈艳琦, 吴东明, 黄秀兰, 樊高琼. 施氮量对糯和非糯小麦原粮品质、酿酒品质及挥发性风味物质的影响[J]. 作物学报, 2023, 49(8): 2240-2258.
[10] 林芬芳, 陈星宇, 周维勋, 王倩, 张东彦. 基于堆栈稀疏自编码器的小麦赤霉病高光谱遥感检测[J]. 作物学报, 2023, 49(8): 2275-2287.
[11] 刘世洁, 杨习文, 马耕, 冯昊翔, 韩志栋, 韩潇杰, 张晓燕, 贺德先, 马冬云, 谢迎新, 王丽芳, 王晨阳. 灌水和施氮对冬小麦根系特征及氮素利用的影响[J]. 作物学报, 2023, 49(8): 2296-2307.
[12] 张振, 石玉, 张永丽, 于振文, 王西芝. 土壤水分含量对小麦耗水特性和旗叶/根系衰老特性的影响[J]. 作物学报, 2023, 49(7): 1895-1905.
[13] 张露露, 张学美, 牟文燕, 黄宁, 郭子糠, 罗一诺, 魏蕾, 孙利谦, 王星舒, 石美, 王朝辉. 我国主要麦区小麦籽粒锰含量: 品种与土壤因素的影响[J]. 作物学报, 2023, 49(7): 1906-1918.
[14] 董志强, 吕丽华, 姚艳荣, 张经廷, 张丽华, 姚海坡, 申海平, 贾秀领. 水氮互作下强筋小麦师栾02-1产量和品质[J]. 作物学报, 2023, 49(7): 1942-1953.
[15] 李凌雨, 周琦锐, 李洋, 张安民, 王贝贝, 马尚宇, 樊永惠, 黄正来, 张文静. 外源6-BA调控孕穗期低温后小麦幼穗发育的转录组分析[J]. 作物学报, 2023, 49(7): 1808-1817.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .
[10] 邢光南, 周斌, 赵团结, 喻德跃, 邢邯, 陈受宜, 盖钧镒. 大豆抗筛豆龟蝽Megacota cribraria (Fabricius)的QTL分析[J]. 作物学报, 2008, 34(03): 361 -368 .