作物学报 ›› 2024, Vol. 50 ›› Issue (3): 779-792.doi: 10.3724/SP.J.1006.2024.31045
• 研究简报 • 上一篇
琚吉浩1(), 马超1, 王添宁1, 吴毅1, 董钟2, 方美娥1, 陈钰姝1, 张均1,*(), 付国占1,*()
JU Ji-Hao1(), MA Chao1, WANG Tian-Ning1, WU Yi1, DONG Zhong2, FANG Mei-E1, CHEN Yu-Shu1, ZHANG Jun1,*(), FU Guo-Zhan1,*()
摘要:
过氧化物酶(Peroxidase, POD)家族成员在调节植物生长发育和响应逆境胁迫中起重要作用。为系统探究小麦(Triticum aestivum L.) TaPOD基因家族的功能及其表达模式, 本研究利用生物信息学的方法鉴定了小麦TaPOD基因家族成员, 对其理化性质、启动子顺式作用元件、进化特征做了预测分析, 并通过小麦转录组和实时荧光定量PCR (Real Time Quantitative, RT-qPCR)分析了其在不同组织、外源激素及逆境胁迫下的表达模式。结果表明, 目前基因组测序小麦中包含659个TaPOD基因家族成员, 蛋白质序列长度在206~518个氨基酸之间; 系统发育分析表明, 小麦TaPOD家族成员分为I~VII组且每组成员数量不等; 序列比对显示小麦TaPOD家族成员具有5个保守基序, 且基因结构等方面存在很大差异, 预示着功能存在多样性; 染色体定位发现其数量在小麦的21条染色体上分布不均匀, 其中2B染色体上数量最多; 通过种内共线性分析发现, 小麦TaPOD基因共有396个重复事件, 同源性较高且进化过程非常保守, 主要通过片段复制和串联复制进行扩增, 且Ka/Ks比率显示仅有4对家族成员受到了正向的自然选择压力; 顺式作用元件分析表明, 上游2 kb区域中存在23种与生长发育和抗逆性相关的结合元件; 基因表达模式分析显示, 86.5% TaPOD基因在小麦根系中表达量较高; 通过RT-qPCR检测发现TaPOD基因表达量与激素诱导和非生物胁迫密切相关。上述结果为深入研究TaPOD基因在调控小麦生长发育与逆境胁迫中的功能提供初步的理论基础。
[1] |
Mathe C, Barre A, Jourda C, Dunand C. Evolution and expression of class III peroxidases. Arch Biochem Biophys, 2010, 500: 58-65.
doi: 10.1016/j.abb.2010.04.007 pmid: 20398621 |
[2] |
Hiraga S, Sasaki K, Ito H, Ohashi H Y, Matsui H. A large family of class III plant peroxidases. Plant Cell Physiol, 2001, 42: 462-468.
doi: 10.1093/pcp/pce061 pmid: 11382811 |
[3] |
Gao C Q, Wang Y C, Liu G F, Wang C, Jiang J, Yang C P. Cloning of ten peroxidase (POD) genes from Tamarix hispida and characterization of their responses to abiotic stress. Plant Mol Biol Rep, 2010, 28: 77-89.
doi: 10.1007/s11105-009-0129-9 |
[4] |
Passardi F, Cosio C, Penel C, Dunand C. Peroxidases have more functions than a Swiss army knife. Plant Cell Rep, 2005, 24: 255-265.
doi: 10.1007/s00299-005-0972-6 pmid: 15856234 |
[5] |
Mei W Q, Qin Y M, Song W G, Li J, Zhu Y X. Cotton GhPOX1 encoding plant class III peroxidase may be responsible for the high level of reactive oxygen species production that is related to cotton fiber elongation. J Genet Genom, 2009, 36: 141-150.
doi: 10.1016/S1673-8527(08)60101-0 |
[6] |
Joo J H, Bae Y S, Lee J S. Role of auxin-induced reactive oxygen species in root gravitropism. Plant Physiol, 2001, 126: 1055-1060.
doi: 10.1104/pp.126.3.1055 pmid: 11457956 |
[7] |
Cordoba-Pedregosa M D, Cordoba F, Villalba J M, Gonzalez-Reyes J A. Zonal changes in ascorbate and hydrogen peroxide contents, peroxidase, and ascorbate-related enzyme activities in onion roots. Plant Physiol, 2003, 131: 697-706.
doi: 10.1104/pp.012682 |
[8] |
Cosio C, Vuillemin L, De Meyer M, Kevers C, Penel C, Dunand C. An anionic class III peroxidase from zucchini may regulate hypocotyl elongation through its auxin oxidase activity. Planta, 2009, 229: 823-836.
doi: 10.1007/s00425-008-0876-0 pmid: 19116728 |
[9] |
Dunand C, De Meyer M, Crévecoeur M, Penel C. Expression of a peroxidase gene in zucchini in relation with hypocotyl growth. Plant Physiol Biochem, 2003, 41: 805-811.
doi: 10.1016/S0981-9428(03)00125-6 |
[10] |
Raggi S, Ferrarini A, Delledonne M, Dunand C, Ranocha P, De Lorenzo G, Cervone F, Ferrari S. The Arabidopsis class III peroxidase AtPRX71 negatively regulates growth under physiological conditions and in response to cell wall damage. Plant Physiol, 2015, 169: 2513-2525.
doi: 10.1104/pp.15.01464 pmid: 26468518 |
[11] |
Kim B H, Kim S Y, Nam K H. Genes encoding plant-specific class III peroxidases are responsible for increased cold tolerance of the brassinosteroid-insensitive 1 mutant. Mol Cells, 2012, 34: 539-548.
doi: 10.1007/s10059-012-0230-z pmid: 23180292 |
[12] |
Jaggi M, Kumar S, Sinha A K. Overexpression of an apoplastic peroxidase gene CrPrx in transgenic hairy root lines of Catharanthus roseus. Appl Microbiol Biotechnol, 2011, 90: 1005-1016.
doi: 10.1007/s00253-011-3131-8 |
[13] |
Su P S, Yan J, Li W, Wang L, Zhao J X, Ma X, Li A F, Wang H W, Kong L R. A member of wheat class III Peroxidase gene family, TaPRX-2A, enhanced the tolerance of salt stress. BMC Plant Biol, 2020, 20: 392.
doi: 10.1186/s12870-020-02602-1 |
[14] |
Mohammadi R. Efficiency of yield-based drought tolerance indices to identify tolerant genotypes in durum wheat. Euphytica, 2016, 211: 71-89.
doi: 10.1007/s10681-016-1727-x |
[15] | 陈翔, 林涛, 林非非, 张妍, 苏慧, 胡燕美, 宋有洪, 魏凤珍, 李金才. 黄淮麦区小麦倒春寒危害机理及防控措施研究进展. 麦类作物学报, 2020, 40: 243-250. |
Chen X, Lin T, Lin F F, Zhang Y, Su H, Hu Y M, Song Y H, Wei F Z, Li J C. Research progress on damage mechanism and prevention and control measures of late spring coldness of wheat in Huanghuai region. J Triticeae Crops, 2020, 40: 243-250 (in Chinese with English abstract). | |
[16] |
Cai D Y, Shoukat M R, Zheng Y D, Tan H B, Meng F Y, Yan H J. Optimizing center pivot irrigation to regulate field microclimate and wheat physiology under dry-hot wind conditions in the north China plain. Water, 2022, 14: 708.
doi: 10.3390/w14050708 |
[17] |
Scialabba A, Bellani L M, Dell’aquila A. Effects of ageing on peroxidase activity and localization in radish (Raphanus sativus L.) seeds. Eur J Histochem, 2002, 46: 351-358.
pmid: 12597620 |
[18] |
Tamura K, Stecher G, Kumar S. MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol, 2021, 38: 3022-3027.
doi: 10.1093/molbev/msab120 pmid: 33892491 |
[19] |
Bailey T L, Johnson J, Grant C E, Noble W S. The MEME suite. Nucleic Acids Res, 2015, 43: 39-49.
doi: 10.1093/nar/gkv416 pmid: 25953851 |
[20] |
Chen C J, Chen H, Zhang Y, Thomas H R, Frank M H, He Y H, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13: 1194-1202.
doi: S1674-2052(20)30187-8 pmid: 32585190 |
[21] |
Wang Y P, Tang H B, Debarry J D, Tan X, Li J P, Wang X Y, Lee T H, Jin H Z, Marler B, Guo H, Kissinger J C, Paterson A H. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res, 2012, 40: e49.
doi: 10.1093/nar/gkr1293 |
[22] |
Kang C H, Jung W Y, Kang Y H, Kim J Y, Kim D G, Jeong J C, Baek D W, Jin J B, Lee J Y, Kim M O, Chung W S, Mengiste T, Koiwa H, Kwak S S, Bahk J D, Lee S Y, Nam J S, Yun D J, Cho M J. AtBAG6, a novel calmodulin-binding protein, induces programmed cell death in yeast and plants. Cell Death Differ, 2006, 13: 84-95.
pmid: 16003391 |
[23] |
Tognolli M, Penel C, Greppin H, Simon P. Analysis and expression of the class III peroxidase large gene family in Arabidopsis thaliana. Gene, 2002, 288: 129-138.
doi: 10.1016/s0378-1119(02)00465-1 pmid: 12034502 |
[24] |
Passardi F, Longet D, Penel C, Dunand C. The class III peroxidase multigenic family in rice and its evolution in land plants. Phytochemistry, 2004, 65: 1879-1893.
doi: 10.1016/j.phytochem.2004.06.023 pmid: 15279994 |
[25] |
Wang Y, Wang Q, Zhao Y, Han G, Zhu S. Systematic analysis of maize class III peroxidase gene family reveals a conserved subfamily involved in abiotic stress response. Gene, 2015, 566: 95-108.
doi: 10.1016/j.gene.2015.04.041 pmid: 25895479 |
[26] |
Moural T W, Lewis K M, Barnaba C, Zhu F, Palmer N A, Sarath G, Scully E D, Jones J P, Sattler S E. Characterization of class III peroxidases from switchgrass. Plant Physiol, 2017, 173: 417-433.
doi: 10.1104/pp.16.01426 pmid: 27879392 |
[27] |
Ren L L, Liu Y J, Liu H J, Qian T T, Qi L W, Wang X R, Zeng Q Y. Subcellular relocalization and positive selection play key roles in the retention of duplicate genes of Populus class III peroxidase family. Plant Cell, 2014, 26: 2404-2419.
doi: 10.1105/tpc.114.124750 |
[28] |
Xiao H L, Wang C P, Khan N, Chen M X, Guan L, Leng X P. Genome-wide identification of the class III POD gene family and their expression profiling in grapevine (Vitis vinifera L.). BMC Genomics, 2020, 21: 444.
doi: 10.1186/s12864-020-06828-z |
[29] |
贾玉库, 高宏欢, 冯健超, 郝紫瑞, 王晨阳, 谢迎新, 郭天财, 马冬云. 小麦G2-like转录因子家族基因鉴定与表达模式分析. 作物学报, 2023, 49: 1410-1425.
doi: 10.3724/SP.J.1006.2023.21036 |
Jia Y K, Gao H H, Feng J C, Hao Z R, Wang C Y, Xie Y X, Guo T C, Ma D Y. Genome-wide identification and expression analysis of G2-like transcription factors family genes in wheat. Acta Agron Sin, 2023, 49: 1410-1425 (in Chinese with English abstract). | |
[30] |
贾小霞, 齐恩芳, 马胜, 黄伟, 郑永伟, 白永杰, 文国宏. 马铃薯PYL基因家族的全基因组鉴定及表达分析. 作物学报, 2022, 48: 2533-2545.
doi: 10.3724/SP.J.1006.2022.14183 |
Jia X X, Qi E F, Ma S, Huang W, Zheng Y W, Bai Y J, Wen G H. Genome-wide identification and expression analysis of potato PYL gene family. Acta Agron Sin, 2022, 48: 2533-2545 (in Chinese with English abstract). | |
[31] |
Najami N, Janda T, Barriah W, Kayam G, Tal M, Guy M, Volokita M. Ascorbate peroxidase gene family in tomato: its identification and characterization. Mol Genet Genom, 2008, 279: 171-182.
doi: 10.1007/s00438-007-0305-2 |
[32] |
Meng G, Fan W Y, Rasmussen S K. Characterisation of the class III peroxidase gene family in carrot taproots and its role in anthocyanin and lignin accumulation. Plant Physiol Biochem, 2021, 167: 245-256.
doi: 10.1016/j.plaphy.2021.08.004 |
[33] |
Jespersen H M, Kjaersgard I V, Ostergaard L, Welinder K G. From sequence analysis of three novel ascorbate peroxidases from Arabidopsis thaliana to structure, function and evolution of seven types of ascorbate peroxidase. Biochem J, 1997, 326: 305-310.
doi: 10.1042/bj3260305 |
[34] |
Cheng L T, Ma L, Meng L X, Shang H H, Cao P J, Jin J J. Genome-wide identification and analysis of the class III peroxidase gene family in tobacco (Nicotiana tabacum). Front Genet, 2022, 13: 916867.
doi: 10.3389/fgene.2022.916867 |
[35] |
Tao Y, Wang F T, Jia D M, Li J T, Zhang Y, Jia C G, Wang D P, Pan H Y. Cloning and functional analysis of the promoter of a stress-inducible gene (ZmRXO1) in maize. Plant Mol Biol Rep, 2015, 33: 200-208.
doi: 10.1007/s11105-014-0741-1 |
[36] |
Nakashima K, Jan A, Todaka D, Maruyama K, Goto S, Shinozaki K, Yamaguchi-Shinozaki K. Comparative functional analysis of six drought-responsive promoters in transgenic rice. Planta, 2014, 239: 47-60.
doi: 10.1007/s00425-013-1960-7 pmid: 24062085 |
[37] |
Kwasniewski M, Chwialkowska K, Kwasniewska J, Kusak J, Siwinski K, Szarejko I. Accumulation of peroxidase-related reactive oxygen species in trichoblasts correlates with root hair initiation in barley. J Plant Physiol, 2013, 170: 185-195.
doi: 10.1016/j.jplph.2012.09.017 |
[38] |
Jabeen R, Iqbal A, Deeba F, Zulfiqar F, Mustafa G, Nawaz H, Habiba U, Nafees M, Zaid A, Siddique K H M. Isolation and characterization of peroxidase P7-like gene and Rab-GDI like gene from potential medicinal plants: a step toward understanding cell defense signaling. Front Plant Sci, 2022, 13: 975852.
doi: 10.3389/fpls.2022.975852 |
[39] |
Wu B M, Li L, Qiu T H, Zhang X, Cui S X. Cytosolic APX2 is a pleiotropic protein involved in H2O2homeostasis, chloroplast protection, plant architecture and fertility maintenance. Plant Cell Rep, 2018, 37: 833-848.
doi: 10.1007/s00299-018-2272-y |
[40] |
Hong S H, Tripathi B N, Chung M S, Cho C, Lee S, Kim J H, Bai H W, Bae H J, Cho J Y, Chung B Y, Lee S S. Functional switching of ascorbate peroxidase 2 of rice (OsAPX2) between peroxidase and molecular chaperone. Sci Rep, 2018, 8: 9171.
doi: 10.1038/s41598-018-27459-1 pmid: 29907832 |
[41] |
Fagerstedt K V, Kukkola E M, Koistinen V V T, Takahashi J, Marjamaa K. Cell wall lignin is polymerised by class III secretable plant peroxidases in Norway spruce. J Integr Plant Biol, 2010, 52: 186-194.
doi: 10.1111/j.1744-7909.2010.00928.x |
[42] |
Yang T T, Zhang P Y, Pan J H, Amanullah S, Luan F S, Han W H, Liu H Y, Wang X Z. Genome-wide analysis of the peroxidase gene family and verification of lignin synthesis-related genes in Watermelon. Int J Mol Sci, 2022, 23: 642.
doi: 10.3390/ijms23020642 |
[43] |
Leng X, Wang H Z, Zhang S, Qu C P, Yang C P, Xu Z R, Liu G J. Identification and characterization of the APX gene family and its expression pattern under phytohormone treatment and abiotic stress in Populus trichocarpa. Genes, 2021, 12: 334.
doi: 10.3390/genes12030334 |
[44] |
Liao G L, Liu Q, Li Y Q, Zhong M, Xu X B. Identification and expression profiling analysis of ascorbate peroxidase gene family in Actinidia chinensis (Hongyang). J Plant Res, 2020, 133: 715-726.
doi: 10.1007/s10265-020-01206-y |
[45] |
Sakai T, Takahashi Y, Nagata T. Analysis of the promoter of the auxin-inducible gene, parC, of tobacco. Plant Cell Physiol, 1996, 37: 906-913.
pmid: 8979393 |
[46] |
Suzuki N, Rivero R M, Shulaev V, Blumwald E, Mittler R. Abiotic and biotic stress combinations. New Phytol, 2014, 203: 32-43.
doi: 10.1111/nph.12797 pmid: 24720847 |
[47] |
Silva E N, Silveira J A G, Rodrigues C R F, Viégas R A. Physiological adjustment to salt stress in Jatropha curcas is associated with accumulation of salt ions, transport and selectivity of K+, osmotic adjustment and K+/Na+ homeostasis. Plant Biol, 2015, 17: 1023-1029.
doi: 10.1111/plb.2015.17.issue-5 |
[48] |
Peng J Y, Li Z H, Wen X, Li W Y, Shi H, Yang L S, Zhu H Q, Guo H W. Salt-induced stabilization of EIN3/EIL1 confers salinity tolerance by deterring ROS accumulation in Arabidopsis. PLoS Genet, 2014, 10: e1004664.
doi: 10.1371/journal.pgen.1004664 |
[49] |
Narusaka Y, Nakashima K, Shinwari Z K, Sakuma Y, Furihata T, Abe H, Narusaka M, Shinozaki K, Yamaguchi-Shinozaki K. Interaction between two cis-acting elements, ABRE and DRE, in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses. Plant J, 2003, 34: 137-148.
doi: 10.1046/j.1365-313X.2003.01708.x |
[50] |
Lu H, Han R L, Jiang X N. Heterologous expression and characterization of a proxidomal ascorbate peroxidase from Populus tomentosa. Mol Biol Rep, 2009, 36: 21-27.
pmid: 17899442 |
[51] |
Fujita Y, Fujita M, Satoh R, Maruyama K, Parvez M M, Seki M, Hiratsu K, Ohme-Takagi M, Shinozaki K, Yamaguchi-Shinozaki K. AREB1 is a transcription activator of novel ABRE-dependent ABA signaling that enhances drought stress tolerance in Arabidopsis. Plant Cell, 2005, 17: 3470-3488.
doi: 10.1105/tpc.105.035659 |
[52] |
Gao Y F, Liu J K, Yang F M, Zhang G Y, Wang D, Zhang L, Ou Y B, Yao Y A. The WRKY transcription factor WRKY8 promotes resistance to pathogen infection and mediates drought and salt stress tolerance in Solanum lycopersicum. Physiol Plant, 2019, 168: 98-117.
doi: 10.1111/ppl.v168.1 |
[1] | 张振, 赵俊晔, 石玉, 张永丽, 于振文. 不同播幅对小麦花后叶片光合特性和产量的影响[J]. 作物学报, 2024, 50(4): 981-990. |
[2] | 李海芬, 鲁清, 刘浩, 温世杰, 王润风, 黄璐, 陈小平, 洪彦彬. 花生赤霉素3-β-双加氧酶(AhGA3ox)基因家族的全基因组鉴定及表达分析[J]. 作物学报, 2024, 50(4): 932-943. |
[3] | 许乃银, 金石桥, 晋芳, 刘丽华, 徐剑文, 刘丰泽, 任雪贞, 孙全, 许栩, 庞斌双. 基于SNP标记的小麦品种遗传相似度及其检测准确度分析[J]. 作物学报, 2024, 50(4): 887-896. |
[4] | 黄宏胜, 张馨月, 居辉, 韩雪. 大气CO2浓度升高背景下冬小麦冠层光谱特征和地上生物量估算[J]. 作物学报, 2024, 50(4): 991-1003. |
[5] | 王亚琪, 徐海风, 李曙光, 傅蒙蒙, 余希文, 赵志鑫, 杨加银, 赵团结. 大豆类病变皱叶突变体NT301遗传分析和2对基因定位[J]. 作物学报, 2024, 50(4): 808-819. |
[6] | 王添宁, 冯雅岚, 琚吉浩, 吴毅, 张均, 马超. 小麦及其祖先物种GRF转录因子家族鉴定与表达分析[J]. 作物学报, 2024, 50(4): 897-913. |
[7] | 齐学礼, 李莹, 李春盈, 韩留鹏, 赵明忠, 张建周. 基于转录组探究外源水杨酸对条锈菌侵染小麦幼苗的缓解效应及差异表达基因分析[J]. 作物学报, 2024, 50(4): 1080-1090. |
[8] | 张宝华, 刘佳静, 田晓, 田旭钊, 董阔, 武郁洁, 肖凯, 李小娟. 小麦TaSPX1基因的克隆、表达及耐低氮逆境的功能研究[J]. 作物学报, 2024, 50(3): 576-589. |
[9] | 郝倩琳, 杨廷志, 吕新茹, 秦慧敏, 王亚林, 贾晨飞, 夏先春, 马武军, 徐登安. 小麦胚芽鞘长度QTL定位和GWAS分析[J]. 作物学报, 2024, 50(3): 590-602. |
[10] | 赵荣荣, 丛楠, 赵闯. 基于Landsat 8影像提取豫中地区冬小麦和夏玉米分布信息的最佳时相选择[J]. 作物学报, 2024, 50(3): 721-733. |
[11] | 范子培, 李龙, 史雨刚, 孙黛珍, 李超男, 景蕊莲. 小麦TabHLH112-2B基因克隆及每穗小穗数相关功能标记开发[J]. 作物学报, 2024, 50(2): 403-413. |
[12] | 张康, 聂志刚, 王钧, 李广. 温度升高下APSIM模型春小麦籽粒生长参数敏感性分析及优化[J]. 作物学报, 2024, 50(2): 464-477. |
[13] | 谭丹, 陈家婷, 郜钰, 张晓军, 李欣, 闫贵云, 李锐, 陈芳, 常利芳, 张树伟, 郭慧娟, 畅志坚, 乔麟轶. 小麦穗型相关生长素通路基因发掘及TaARF23-A与小穗数关联分析[J]. 作物学报, 2024, 50(2): 506-513. |
[14] | 李艳, 方宇辉, 王永霞, 彭超军, 华夏, 齐学礼, 胡琳, 许为钢. 不同磷胁迫处理转OsPHR2小麦的转录组学分析[J]. 作物学报, 2024, 50(2): 340-353. |
[15] | 谢炜, 贺鹏, 马宏亮, 雷芳, 黄秀兰, 樊高琼, 杨洪坤. 秋闲期秸秆覆盖与施磷对冬小麦氮素吸收利用的影响[J]. 作物学报, 2024, 50(2): 440-450. |
|