作物学报 ›› 2024, Vol. 50 ›› Issue (3): 779-792.doi: 10.3724/SP.J.1006.2024.31045
• 研究简报 • 上一篇
琚吉浩1(
), 马超1, 王添宁1, 吴毅1, 董钟2, 方美娥1, 陈钰姝1, 张均1,*(
), 付国占1,*(
)
JU Ji-Hao1(
), MA Chao1, WANG Tian-Ning1, WU Yi1, DONG Zhong2, FANG Mei-E1, CHEN Yu-Shu1, ZHANG Jun1,*(
), FU Guo-Zhan1,*(
)
摘要:
过氧化物酶(Peroxidase, POD)家族成员在调节植物生长发育和响应逆境胁迫中起重要作用。为系统探究小麦(Triticum aestivum L.) TaPOD基因家族的功能及其表达模式, 本研究利用生物信息学的方法鉴定了小麦TaPOD基因家族成员, 对其理化性质、启动子顺式作用元件、进化特征做了预测分析, 并通过小麦转录组和实时荧光定量PCR (Real Time Quantitative, RT-qPCR)分析了其在不同组织、外源激素及逆境胁迫下的表达模式。结果表明, 目前基因组测序小麦中包含659个TaPOD基因家族成员, 蛋白质序列长度在206~518个氨基酸之间; 系统发育分析表明, 小麦TaPOD家族成员分为I~VII组且每组成员数量不等; 序列比对显示小麦TaPOD家族成员具有5个保守基序, 且基因结构等方面存在很大差异, 预示着功能存在多样性; 染色体定位发现其数量在小麦的21条染色体上分布不均匀, 其中2B染色体上数量最多; 通过种内共线性分析发现, 小麦TaPOD基因共有396个重复事件, 同源性较高且进化过程非常保守, 主要通过片段复制和串联复制进行扩增, 且Ka/Ks比率显示仅有4对家族成员受到了正向的自然选择压力; 顺式作用元件分析表明, 上游2 kb区域中存在23种与生长发育和抗逆性相关的结合元件; 基因表达模式分析显示, 86.5% TaPOD基因在小麦根系中表达量较高; 通过RT-qPCR检测发现TaPOD基因表达量与激素诱导和非生物胁迫密切相关。上述结果为深入研究TaPOD基因在调控小麦生长发育与逆境胁迫中的功能提供初步的理论基础。
| [1] |
Mathe C, Barre A, Jourda C, Dunand C. Evolution and expression of class III peroxidases. Arch Biochem Biophys, 2010, 500: 58-65.
doi: 10.1016/j.abb.2010.04.007 pmid: 20398621 |
| [2] |
Hiraga S, Sasaki K, Ito H, Ohashi H Y, Matsui H. A large family of class III plant peroxidases. Plant Cell Physiol, 2001, 42: 462-468.
doi: 10.1093/pcp/pce061 pmid: 11382811 |
| [3] |
Gao C Q, Wang Y C, Liu G F, Wang C, Jiang J, Yang C P. Cloning of ten peroxidase (POD) genes from Tamarix hispida and characterization of their responses to abiotic stress. Plant Mol Biol Rep, 2010, 28: 77-89.
doi: 10.1007/s11105-009-0129-9 |
| [4] |
Passardi F, Cosio C, Penel C, Dunand C. Peroxidases have more functions than a Swiss army knife. Plant Cell Rep, 2005, 24: 255-265.
doi: 10.1007/s00299-005-0972-6 pmid: 15856234 |
| [5] |
Mei W Q, Qin Y M, Song W G, Li J, Zhu Y X. Cotton GhPOX1 encoding plant class III peroxidase may be responsible for the high level of reactive oxygen species production that is related to cotton fiber elongation. J Genet Genom, 2009, 36: 141-150.
doi: 10.1016/S1673-8527(08)60101-0 |
| [6] |
Joo J H, Bae Y S, Lee J S. Role of auxin-induced reactive oxygen species in root gravitropism. Plant Physiol, 2001, 126: 1055-1060.
doi: 10.1104/pp.126.3.1055 pmid: 11457956 |
| [7] |
Cordoba-Pedregosa M D, Cordoba F, Villalba J M, Gonzalez-Reyes J A. Zonal changes in ascorbate and hydrogen peroxide contents, peroxidase, and ascorbate-related enzyme activities in onion roots. Plant Physiol, 2003, 131: 697-706.
doi: 10.1104/pp.012682 |
| [8] |
Cosio C, Vuillemin L, De Meyer M, Kevers C, Penel C, Dunand C. An anionic class III peroxidase from zucchini may regulate hypocotyl elongation through its auxin oxidase activity. Planta, 2009, 229: 823-836.
doi: 10.1007/s00425-008-0876-0 pmid: 19116728 |
| [9] |
Dunand C, De Meyer M, Crévecoeur M, Penel C. Expression of a peroxidase gene in zucchini in relation with hypocotyl growth. Plant Physiol Biochem, 2003, 41: 805-811.
doi: 10.1016/S0981-9428(03)00125-6 |
| [10] |
Raggi S, Ferrarini A, Delledonne M, Dunand C, Ranocha P, De Lorenzo G, Cervone F, Ferrari S. The Arabidopsis class III peroxidase AtPRX71 negatively regulates growth under physiological conditions and in response to cell wall damage. Plant Physiol, 2015, 169: 2513-2525.
doi: 10.1104/pp.15.01464 pmid: 26468518 |
| [11] |
Kim B H, Kim S Y, Nam K H. Genes encoding plant-specific class III peroxidases are responsible for increased cold tolerance of the brassinosteroid-insensitive 1 mutant. Mol Cells, 2012, 34: 539-548.
doi: 10.1007/s10059-012-0230-z pmid: 23180292 |
| [12] |
Jaggi M, Kumar S, Sinha A K. Overexpression of an apoplastic peroxidase gene CrPrx in transgenic hairy root lines of Catharanthus roseus. Appl Microbiol Biotechnol, 2011, 90: 1005-1016.
doi: 10.1007/s00253-011-3131-8 |
| [13] |
Su P S, Yan J, Li W, Wang L, Zhao J X, Ma X, Li A F, Wang H W, Kong L R. A member of wheat class III Peroxidase gene family, TaPRX-2A, enhanced the tolerance of salt stress. BMC Plant Biol, 2020, 20: 392.
doi: 10.1186/s12870-020-02602-1 |
| [14] |
Mohammadi R. Efficiency of yield-based drought tolerance indices to identify tolerant genotypes in durum wheat. Euphytica, 2016, 211: 71-89.
doi: 10.1007/s10681-016-1727-x |
| [15] | 陈翔, 林涛, 林非非, 张妍, 苏慧, 胡燕美, 宋有洪, 魏凤珍, 李金才. 黄淮麦区小麦倒春寒危害机理及防控措施研究进展. 麦类作物学报, 2020, 40: 243-250. |
| Chen X, Lin T, Lin F F, Zhang Y, Su H, Hu Y M, Song Y H, Wei F Z, Li J C. Research progress on damage mechanism and prevention and control measures of late spring coldness of wheat in Huanghuai region. J Triticeae Crops, 2020, 40: 243-250 (in Chinese with English abstract). | |
| [16] |
Cai D Y, Shoukat M R, Zheng Y D, Tan H B, Meng F Y, Yan H J. Optimizing center pivot irrigation to regulate field microclimate and wheat physiology under dry-hot wind conditions in the north China plain. Water, 2022, 14: 708.
doi: 10.3390/w14050708 |
| [17] |
Scialabba A, Bellani L M, Dell’aquila A. Effects of ageing on peroxidase activity and localization in radish (Raphanus sativus L.) seeds. Eur J Histochem, 2002, 46: 351-358.
pmid: 12597620 |
| [18] |
Tamura K, Stecher G, Kumar S. MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol, 2021, 38: 3022-3027.
doi: 10.1093/molbev/msab120 pmid: 33892491 |
| [19] |
Bailey T L, Johnson J, Grant C E, Noble W S. The MEME suite. Nucleic Acids Res, 2015, 43: 39-49.
doi: 10.1093/nar/gkv416 pmid: 25953851 |
| [20] |
Chen C J, Chen H, Zhang Y, Thomas H R, Frank M H, He Y H, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13: 1194-1202.
doi: S1674-2052(20)30187-8 pmid: 32585190 |
| [21] |
Wang Y P, Tang H B, Debarry J D, Tan X, Li J P, Wang X Y, Lee T H, Jin H Z, Marler B, Guo H, Kissinger J C, Paterson A H. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res, 2012, 40: e49.
doi: 10.1093/nar/gkr1293 |
| [22] |
Kang C H, Jung W Y, Kang Y H, Kim J Y, Kim D G, Jeong J C, Baek D W, Jin J B, Lee J Y, Kim M O, Chung W S, Mengiste T, Koiwa H, Kwak S S, Bahk J D, Lee S Y, Nam J S, Yun D J, Cho M J. AtBAG6, a novel calmodulin-binding protein, induces programmed cell death in yeast and plants. Cell Death Differ, 2006, 13: 84-95.
pmid: 16003391 |
| [23] |
Tognolli M, Penel C, Greppin H, Simon P. Analysis and expression of the class III peroxidase large gene family in Arabidopsis thaliana. Gene, 2002, 288: 129-138.
doi: 10.1016/s0378-1119(02)00465-1 pmid: 12034502 |
| [24] |
Passardi F, Longet D, Penel C, Dunand C. The class III peroxidase multigenic family in rice and its evolution in land plants. Phytochemistry, 2004, 65: 1879-1893.
doi: 10.1016/j.phytochem.2004.06.023 pmid: 15279994 |
| [25] |
Wang Y, Wang Q, Zhao Y, Han G, Zhu S. Systematic analysis of maize class III peroxidase gene family reveals a conserved subfamily involved in abiotic stress response. Gene, 2015, 566: 95-108.
doi: 10.1016/j.gene.2015.04.041 pmid: 25895479 |
| [26] |
Moural T W, Lewis K M, Barnaba C, Zhu F, Palmer N A, Sarath G, Scully E D, Jones J P, Sattler S E. Characterization of class III peroxidases from switchgrass. Plant Physiol, 2017, 173: 417-433.
doi: 10.1104/pp.16.01426 pmid: 27879392 |
| [27] |
Ren L L, Liu Y J, Liu H J, Qian T T, Qi L W, Wang X R, Zeng Q Y. Subcellular relocalization and positive selection play key roles in the retention of duplicate genes of Populus class III peroxidase family. Plant Cell, 2014, 26: 2404-2419.
doi: 10.1105/tpc.114.124750 |
| [28] |
Xiao H L, Wang C P, Khan N, Chen M X, Guan L, Leng X P. Genome-wide identification of the class III POD gene family and their expression profiling in grapevine (Vitis vinifera L.). BMC Genomics, 2020, 21: 444.
doi: 10.1186/s12864-020-06828-z |
| [29] |
贾玉库, 高宏欢, 冯健超, 郝紫瑞, 王晨阳, 谢迎新, 郭天财, 马冬云. 小麦G2-like转录因子家族基因鉴定与表达模式分析. 作物学报, 2023, 49: 1410-1425.
doi: 10.3724/SP.J.1006.2023.21036 |
| Jia Y K, Gao H H, Feng J C, Hao Z R, Wang C Y, Xie Y X, Guo T C, Ma D Y. Genome-wide identification and expression analysis of G2-like transcription factors family genes in wheat. Acta Agron Sin, 2023, 49: 1410-1425 (in Chinese with English abstract). | |
| [30] |
贾小霞, 齐恩芳, 马胜, 黄伟, 郑永伟, 白永杰, 文国宏. 马铃薯PYL基因家族的全基因组鉴定及表达分析. 作物学报, 2022, 48: 2533-2545.
doi: 10.3724/SP.J.1006.2022.14183 |
| Jia X X, Qi E F, Ma S, Huang W, Zheng Y W, Bai Y J, Wen G H. Genome-wide identification and expression analysis of potato PYL gene family. Acta Agron Sin, 2022, 48: 2533-2545 (in Chinese with English abstract). | |
| [31] |
Najami N, Janda T, Barriah W, Kayam G, Tal M, Guy M, Volokita M. Ascorbate peroxidase gene family in tomato: its identification and characterization. Mol Genet Genom, 2008, 279: 171-182.
doi: 10.1007/s00438-007-0305-2 |
| [32] |
Meng G, Fan W Y, Rasmussen S K. Characterisation of the class III peroxidase gene family in carrot taproots and its role in anthocyanin and lignin accumulation. Plant Physiol Biochem, 2021, 167: 245-256.
doi: 10.1016/j.plaphy.2021.08.004 |
| [33] |
Jespersen H M, Kjaersgard I V, Ostergaard L, Welinder K G. From sequence analysis of three novel ascorbate peroxidases from Arabidopsis thaliana to structure, function and evolution of seven types of ascorbate peroxidase. Biochem J, 1997, 326: 305-310.
doi: 10.1042/bj3260305 |
| [34] |
Cheng L T, Ma L, Meng L X, Shang H H, Cao P J, Jin J J. Genome-wide identification and analysis of the class III peroxidase gene family in tobacco (Nicotiana tabacum). Front Genet, 2022, 13: 916867.
doi: 10.3389/fgene.2022.916867 |
| [35] |
Tao Y, Wang F T, Jia D M, Li J T, Zhang Y, Jia C G, Wang D P, Pan H Y. Cloning and functional analysis of the promoter of a stress-inducible gene (ZmRXO1) in maize. Plant Mol Biol Rep, 2015, 33: 200-208.
doi: 10.1007/s11105-014-0741-1 |
| [36] |
Nakashima K, Jan A, Todaka D, Maruyama K, Goto S, Shinozaki K, Yamaguchi-Shinozaki K. Comparative functional analysis of six drought-responsive promoters in transgenic rice. Planta, 2014, 239: 47-60.
doi: 10.1007/s00425-013-1960-7 pmid: 24062085 |
| [37] |
Kwasniewski M, Chwialkowska K, Kwasniewska J, Kusak J, Siwinski K, Szarejko I. Accumulation of peroxidase-related reactive oxygen species in trichoblasts correlates with root hair initiation in barley. J Plant Physiol, 2013, 170: 185-195.
doi: 10.1016/j.jplph.2012.09.017 |
| [38] |
Jabeen R, Iqbal A, Deeba F, Zulfiqar F, Mustafa G, Nawaz H, Habiba U, Nafees M, Zaid A, Siddique K H M. Isolation and characterization of peroxidase P7-like gene and Rab-GDI like gene from potential medicinal plants: a step toward understanding cell defense signaling. Front Plant Sci, 2022, 13: 975852.
doi: 10.3389/fpls.2022.975852 |
| [39] |
Wu B M, Li L, Qiu T H, Zhang X, Cui S X. Cytosolic APX2 is a pleiotropic protein involved in H2O2homeostasis, chloroplast protection, plant architecture and fertility maintenance. Plant Cell Rep, 2018, 37: 833-848.
doi: 10.1007/s00299-018-2272-y |
| [40] |
Hong S H, Tripathi B N, Chung M S, Cho C, Lee S, Kim J H, Bai H W, Bae H J, Cho J Y, Chung B Y, Lee S S. Functional switching of ascorbate peroxidase 2 of rice (OsAPX2) between peroxidase and molecular chaperone. Sci Rep, 2018, 8: 9171.
doi: 10.1038/s41598-018-27459-1 pmid: 29907832 |
| [41] |
Fagerstedt K V, Kukkola E M, Koistinen V V T, Takahashi J, Marjamaa K. Cell wall lignin is polymerised by class III secretable plant peroxidases in Norway spruce. J Integr Plant Biol, 2010, 52: 186-194.
doi: 10.1111/j.1744-7909.2010.00928.x |
| [42] |
Yang T T, Zhang P Y, Pan J H, Amanullah S, Luan F S, Han W H, Liu H Y, Wang X Z. Genome-wide analysis of the peroxidase gene family and verification of lignin synthesis-related genes in Watermelon. Int J Mol Sci, 2022, 23: 642.
doi: 10.3390/ijms23020642 |
| [43] |
Leng X, Wang H Z, Zhang S, Qu C P, Yang C P, Xu Z R, Liu G J. Identification and characterization of the APX gene family and its expression pattern under phytohormone treatment and abiotic stress in Populus trichocarpa. Genes, 2021, 12: 334.
doi: 10.3390/genes12030334 |
| [44] |
Liao G L, Liu Q, Li Y Q, Zhong M, Xu X B. Identification and expression profiling analysis of ascorbate peroxidase gene family in Actinidia chinensis (Hongyang). J Plant Res, 2020, 133: 715-726.
doi: 10.1007/s10265-020-01206-y |
| [45] |
Sakai T, Takahashi Y, Nagata T. Analysis of the promoter of the auxin-inducible gene, parC, of tobacco. Plant Cell Physiol, 1996, 37: 906-913.
pmid: 8979393 |
| [46] |
Suzuki N, Rivero R M, Shulaev V, Blumwald E, Mittler R. Abiotic and biotic stress combinations. New Phytol, 2014, 203: 32-43.
doi: 10.1111/nph.12797 pmid: 24720847 |
| [47] |
Silva E N, Silveira J A G, Rodrigues C R F, Viégas R A. Physiological adjustment to salt stress in Jatropha curcas is associated with accumulation of salt ions, transport and selectivity of K+, osmotic adjustment and K+/Na+ homeostasis. Plant Biol, 2015, 17: 1023-1029.
doi: 10.1111/plb.2015.17.issue-5 |
| [48] |
Peng J Y, Li Z H, Wen X, Li W Y, Shi H, Yang L S, Zhu H Q, Guo H W. Salt-induced stabilization of EIN3/EIL1 confers salinity tolerance by deterring ROS accumulation in Arabidopsis. PLoS Genet, 2014, 10: e1004664.
doi: 10.1371/journal.pgen.1004664 |
| [49] |
Narusaka Y, Nakashima K, Shinwari Z K, Sakuma Y, Furihata T, Abe H, Narusaka M, Shinozaki K, Yamaguchi-Shinozaki K. Interaction between two cis-acting elements, ABRE and DRE, in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses. Plant J, 2003, 34: 137-148.
doi: 10.1046/j.1365-313X.2003.01708.x |
| [50] |
Lu H, Han R L, Jiang X N. Heterologous expression and characterization of a proxidomal ascorbate peroxidase from Populus tomentosa. Mol Biol Rep, 2009, 36: 21-27.
pmid: 17899442 |
| [51] |
Fujita Y, Fujita M, Satoh R, Maruyama K, Parvez M M, Seki M, Hiratsu K, Ohme-Takagi M, Shinozaki K, Yamaguchi-Shinozaki K. AREB1 is a transcription activator of novel ABRE-dependent ABA signaling that enhances drought stress tolerance in Arabidopsis. Plant Cell, 2005, 17: 3470-3488.
doi: 10.1105/tpc.105.035659 |
| [52] |
Gao Y F, Liu J K, Yang F M, Zhang G Y, Wang D, Zhang L, Ou Y B, Yao Y A. The WRKY transcription factor WRKY8 promotes resistance to pathogen infection and mediates drought and salt stress tolerance in Solanum lycopersicum. Physiol Plant, 2019, 168: 98-117.
doi: 10.1111/ppl.v168.1 |
| [1] | 胡润慧, 汪军成, 司二静, 张宏, 李兴茂, 马小乐, 孟亚雄, 王化俊, 刘青, 姚立蓉, 李葆春. 小麦苗期耐旱耐盐种质筛选及抗旱耐盐综合评价[J]. 作物学报, 2025, 51(9): 2371-2386. |
| [2] | 杨颖聪, 张俊豪, 唐一哲, 乔唱唱, 王鹏博, 黄明, 徐国伟, 王贺正. 秸秆还田和施磷量对旱地小麦籽粒淀粉及其合成相关酶活性的影响[J]. 作物学报, 2025, 51(9): 2467-2484. |
| [3] | 孔德真, 桑伟, 聂迎彬, 李伟, 徐红军, 李江博, 刘鹏鹏, 田笑明. 小麦AL型细胞质雄性不育系与同型保持系穗花发育时期代谢物变化比较研究[J]. 作物学报, 2025, 51(9): 2454-2466. |
| [4] | 李云香, 郭千纤, 侯万伟, 张小娟. 引进ICARDA小麦苗期根系抗旱性状的全基因组关联分析[J]. 作物学报, 2025, 51(9): 2387-2398. |
| [5] | 李璐琪, 程宇坤, 白斌, 雷斌, 耿洪伟. 小麦叶片气孔相关性状全基因组关联分析[J]. 作物学报, 2025, 51(9): 2266-2284. |
| [6] | 杨婷婷, 陈娟, ABDUL Rehman, 李婧, 闫素辉, 汪建来, 李文阳. 花后弱光对软质小麦干物质积累转运、籽粒产量和淀粉品质的影响[J]. 作物学报, 2025, 51(8): 2204-2219. |
| [7] | 闫喆林, 任强, 樊志龙, 殷文, 孙亚丽, 范虹, 何蔚, 胡发龙, 闫丽娟, 柴强. 氮肥后移优化绿洲灌区小麦间作玉米种间关系提高氮素利用效率[J]. 作物学报, 2025, 51(8): 2190-2203. |
| [8] | 王曜阔, 王文政, 张敏, 刘希伟, 杨敏, 李昊昱, 张灵鑫, 闫彦菲, 蔡瑞国. 水氮运筹对冬小麦籽粒GMP合成和面粉加工品质的影响[J]. 作物学报, 2025, 51(8): 2176-2189. |
| [9] | 姜朋, 吴磊, 黄倩楠, 李畅, 王化敦, 何漪, 张鹏, 张旭. 矮秆基因Rht-D1在长江中下游麦区的育种利用探索[J]. 作物学报, 2025, 51(8): 2077-2086. |
| [10] | 蔡金珊, 李超男, 王景一, 李宁, 柳玉平, 景蕊莲, 李龙, 孙黛珍. 小麦幼苗根系性状全基因组关联分析及TaSRL-3B优异等位基因发掘[J]. 作物学报, 2025, 51(8): 2020-2032. |
| [11] | 张飞飞, 何万龙, 焦文娟, 白斌, 耿洪伟, 程宇坤. 小麦抗条锈病相关性状元分析及候选基因分析[J]. 作物学报, 2025, 51(8): 2111-2127. |
| [12] | 宋改利, 王璐倩, 屈柯飞, 唐建卫, 董纯豪, 黄振朴, 高艳, 牛吉山, 殷贵鸿, 李巧云. Bipolaris sorokiniana黑胚病对中筋小麦淀粉含量、粒度分布与糊化特性的影响[J]. 作物学报, 2025, 51(8): 2164-2175. |
| [13] | 高梦娟, 赵贺莹, 陈家辉, 陈晓倩, 牛萌康, 钱琪润, 崔陆飞, 邢江敏, 银庆淼, 郭雯, 张宁, 孙丛苇, 阳霞, 裴丹, 贾奥琳, 陈锋, 余晓东, 任妍. 小麦抗纹枯病新位点Qse.hnau-5AS的定位及其候选基因鉴定[J]. 作物学报, 2025, 51(8): 2240-2250. |
| [14] | 鲁向前, 付玉洁, 赵俊恒, 郑楠楠, 孙楠楠, 张国平, 叶玲珍. 小麦花药培养最佳取样时期穗部形态特征鉴定与高培养力基因型筛选[J]. 作物学报, 2025, 51(8): 2033-2047. |
| [15] | 王天译, 杨绣娟, 赵佳佳, 郝宇琼, 郑兴卫, 武棒棒, 李晓华, 郝水源, 郑军. 山西小麦醇溶蛋白多样性及其对面粉品质效应研究[J]. 作物学报, 2025, 51(7): 1784-1800. |
|
||