作物学报 ›› 2025, Vol. 51 ›› Issue (1): 1-29.doi: 10.3724/SP.J.1006.2025.44122
• 综述 • 下一篇
谢章书1(), 谢学方2(), 屠小菊1, 刘爱玉1, 董合忠3,*(), 周仲华1,*()
XIE Zhang-Shu1(), XIE Xue-Fang2(), TU Xiao-Ju1, LIU Ai-Yu1, DONG He-Zhong3,*(), ZHOU Zhong-Hua1,*()
摘要:
棉花蕾铃脱落是一个普遍存在的现象, 有对逆境环境胁迫的主动适应性脱落, 也有因品种遗传特性、环境条件、栽培措施以及生物和非生物胁迫被动的受损脱落。蕾铃脱落直接影响着棉花的产量, 国内外现有公开报道多集中于20世纪50、60年代关于乙烯和脱落酸对棉花蕾铃脱落影响的初步发现。结合其他植物的研究结果来看, 蕾铃脱落似乎与生长素、赤霉素和细胞分裂素等促生长类激素的下降以及乙烯和脱落酸等抑制生长类激素的升高密切相关, 激素在植物体内不仅介导新陈代谢过程, 还协调着与信号通路相关的调控因子, 在脱落过程中起着关键作用。本文从植物激素调控入手, 综述了近年来包括脱落区形成和作用的分子调控机制以及各激素在棉花蕾铃脱落以及其他植物(生殖)器官脱落过程中的响应和调控机制等。发现目前以棉花蕾铃脱落为对象的研究非常匮乏, 且多集中于少数激素对棉花生殖生长影响的有限研究, 缺乏对导致蕾铃脱落的深层次机制的探究和解析。因此, 未来研究方向应着重于探究棉花蕾铃脱落的遗传基础、发掘新的抗脱落基因资源和培育抗脱落棉花品种, 同时加强在以棉花为模型植物下, 蕾铃脱落与植物激素调节的关系研究, 为提高棉花产量提供理论依据和技术支持。
[1] | 谢章书, 廖良秀, 李侃, 杨丹, 周成轩, 朱方歌, 许豆豆, 刘爱玉, 周仲华. 种子球化处理、播种密度和播期对直播棉生理特性及生长发育的影响. 江苏农业学报, 2023, 39: 1312-1322. |
Xie Z S, Liao L X, Li K, Yang D, Zhou C X, Zhu F G, Xu D D, Liu A Y, Zhou Z H. Effects of seed spheroidization, sowing density and sowing date on physiological characteristics and growth and development of direct seeding cotton. Jiangsu J Agric Sci, 2023, 39: 1312-1322 (in Chinese with English abstract). | |
[2] | Guinn G. Causes of square and boll shedding in cotton. [2024-09-20]. https://naldc.nal.usda.gov/download/CAT87201601/PDF. |
[3] | 辜永强, 刘静, 李茂春, 郝宏飞. 新疆喀什棉花蕾铃脱落气象条件分析及防御对策. 中国棉花, 2019, 46(7): 42-43. |
Gu Y Q, Liu J, Li M C, Hao H F. Analysis on meteorological conditions of cotton bud and boll falling off in Kashi, Xinjiang and countermeasures. China Cotton, 2019, 46(7): 42-43 (in Chinese). | |
[4] | 刘云涛, 肖文俊. 高温胁迫下棉花蕾铃脱落及耐高温育种研究进展. 分子植物育种, 2019, 17: 5089-5096. |
Liu Y T, Xiao W J. Research progress on square and boll shedding and high temperature tolerance breeding of cotton under heat stress. Mol Plant Breed, 2019, 17: 5089-5096 (in Chinese with English abstract). | |
[5] | 中国农业科学院棉花研究所. 中国棉花栽培学. 上海: 上海科学技术出版社, 2013. pp 209-219. |
Institute of Cotton Research, Chinese Academy of Agricultural Sciences. Cotton Cultivation in China. Shanghai: Shanghai Scientific & Technical Publishers, 2013. pp 209-219 (in Chinese). | |
[6] | 肖光顺, 李保成, 马晓梅, 李生秀, 周小凤, 谢宗铭. 膜下滴灌早熟陆地棉蕾铃脱落动态规律初报. 中国农学通报, 2008, 24(6): 159-163. |
Xiao G S, Li B C, Ma X M, Li S X, Zhou X F, Xie Z M. A preliminary study on the abscission regulation of buds and bolls of early-maturity upland cotton to drip irrigation under mulch. Chin Agric Sci Bull, 2008, 24(6): 159-163 (in Chinese with English abstract). | |
[7] | Morgan P W, Durham J I. Abscission: potentiating action of auxin transport inhibitors. Plant Physiol, 1972, 50: 313-318. |
[8] | 徐京三, 陈玉杰. 1994年棉花蕾铃脱落加重原因浅析. 中国棉花, 1995, (3): 26. |
Xu J S, Chen Y J. An analysis of the causes of aggravation of cotton bud boll shedding in 1994. China Cotton, 1995, (3): 26 (in Chinese). | |
[9] | 陈金湘, 李曼瑞. 棉花高产优质低耗栽培实用模型的研究: II.栽培条件与棉株成铃模式及产量形成的关系. 湖南农学院学报, 1987, 13(4): 9-16. |
Chen J X, Li M R. Researches on cotton cultivation model: II. the relationship between culture conditions and the friuting model and yield formation. J Hunan Agric Univ Nat Sci, 1987, 13(4): 9-16 (in Chinese with English abstract). | |
[10] | Sadras V O. Compensatory growth in cotton after loss of reproductive organs. Field Crops Res, 1995, 40: 1-18. |
[11] | Addicott F T. Abscission. Berkeley: University of California Press, 1982. |
[12] | Teague T G, Tugwell N P, Villavaso E J. Late-season tarnished plant bug infestations-when is the crop safe? Summaries of Arkansas Cotton Research 2001. AAES Research Series 497, 2001. pp. 164-172. |
[13] | Dhawan A K, Simwat G S, Sidhu A S. Shedding of fruiting bodies by bollworms in Asiatic cottons. J Res Punjab Agric Univ, 1990, 27: 441-443. |
[14] | Sexton R, Roberts J A. Cell biology of abscission. Annu Rev Plant Physiol, 1982, 33: 133-162. |
[15] | Nakano T, Kimbara J, Fujisawa M, Kitagawa M, Ihashi N, Maeda H, Kasumi T, Ito Y. MACROCALYX and JOINTLESS interact in the transcriptional regulation of tomato fruit abscission zone development. Plant Physiol, 2012, 158: 439-450. |
[16] | Patterson S E. Cutting loose. abscission and dehiscence in Arabidopsis. Plant Cell, 2001, 126: 494-500. |
[17] | Ballester P, Ferrándiz C. Shattering fruits: variations on a dehiscent theme. Curr Opin Plant Biol, 2017, 35: 68-75. |
[18] | Cho H T, Cosgrove D J. Altered expression of expansin modulates leaf growth and pedicel abscission in Arabidopsis thaliana. Plant Cell, 2000, 97: 9783-9788. |
[19] | Webster B D, Leopold A C. Stem abscission in Phaseolus vulgaris explants. Bot Gaz, 1972, 133: 292-298. |
[20] | Tripathi S K, Sane A P, Nath P, Tuteja N. Organ abscission in plants:Understanding the process through transgenic approaches. In: Rivera-Dominguez M, Troncoso-Rojas R, Tiznado-Hernandez M E, eds. A Transgenic Approach in Plant Biochemistry and Physiology, Research Signpost, 2008. pp 155-180. |
[21] | 张士荣, 白灯莎·买买提艾力, 冯固. 棉花蕾铃发育及其生理机制研究. 中国棉花, 2007, 34(2): 5-8. |
Zhang S R, BaiDengSha M M T A L, Feng G. Study on the development of cotton bud and boll and its physiological mechanism. China Cotton, 2007, 34(2): 5-8 (in Chinese). | |
[22] | Pitman L V. Compensation of Cotton to Square Removal at Various Rates. MS Thesis of the Virginia Polytechnic Institute and State University, Virginia, USA, 2000. |
[23] | Gutierrez A P, Daxl R, Quant G L, Falcon L A. Estimating economic thresholds for bollworm, Heliothis ZeaBoddie, 1and boll weevil, Anthonomus grandisBoh., 2Damage in Nicaraguan cotton, Gossypium hirsutum L. 3. Environ Entomol, 1981, 10: 872-879. |
[24] | Oosterhuis D M, Jernstedt J. Morphology and Anatomy of the Cotton Plant. New York: John Wiley & Sons, Inc. Press, 1999. pp 175-206. |
[25] | Goswami C L, Dayal J. Nutritional and Hormonal Aspect of Boll Shedding in Cotton. National Symposium on Regulation of Growth and Differentiation in Nature, 1998, March 21-23, Chandigarh. pp 3-4. |
[26] | Crozat Y, Judais V, Kasemsap P. Age-related abscission patterns of cotton fruiting forms: timing of the end of abscission susceptibility in relation to water content and growth of the boll. Field Crops Res, 1999, 64: 261-272. |
[27] | Hebbar K B, Rao M R K, Khadi B M. Synchronized boll development of BT cotton hybrids and their physiological consequences. Curr Sci, 2007, 93: 693-695. |
[28] | Shalini. Survey, Crop Loss Estimation and Management of Mirid Bug, Creontiades biseratense (Distant) (miridae: hemiptera) in BT Cotton. MS Thesis of Agricultural Entomology (Department) University of Agricultural Sciences, Karnataka State, India, 2010. |
[29] | Dhawan A K, Simwat G S, Sidhu A S. Square shedding due to bollworms in different varieties of Gossypium arboreum. Plant Cell, 1990, 27: 606-610. |
[30] | Mason T G. Growth and abscission in sea island cotton. Ann Bot, 1922, 36: 457-484. |
[31] | 金成忠, 倪晋山, 汤玉玮, 郑泽荣, 张静兰, 刘世峰, 刘文燕, 李训诂. 有机养料在棉花蕾铃脱落中的作用. 植物生理学通讯, 1956, (5): 46-52. |
Jin C Z, Ni J S, Tang Y W, Zheng Z R, Zhang J L, Liu S F, Liu W Y, Li X G. The role of organic nutrients in cotton bud and boll shedding. Plant Physiol Commun, 1956, (5): 46-52 (in Chinese). | |
[32] | 郑泽荣, 陈敬祥. 棉花的生殖生长与蕾铃脱落的关系. 中国农业科学, 1980, 13(2): 51-58. |
Zheng Z R, Chen J X. Studies on the relation between reproductive growth and shedding of buds and bolls in cotton plant. Sci Agric Sin, 1980, 13(2): 51-58 (in Chinese with English abstract). | |
[33] | Eaton F M, Rigler N E. Effect of light intensity, nitrogen supply, and fruiting on carbohydrate utilization by the cotton plant. Plant Physiol, 1945, 20: 380-411. |
[34] | Eaton F M, Ergle D R. Relationship of seasonal trends in carbohydrate and nitrogen levels and effects of girdling and spraying with sucrose and urea to the nutritional interpretation of boll shedding in cotton. Plant Physiol, 1953, 28: 503-520. |
[35] | Eaton F M, Ergle D R. Effects of shade and partial defoliation on carbohydrate levels and the growth, fruiting and fiber properties of cotton plants. Plant Physiol, 1954, 29: 39-49. |
[36] | Osborne D J. Acceleration of abscission by a factor produced in senescent leaves. Nature, 1955, 176: 1161-1163. |
[37] | Hall W C, Herrero F A, Katterman F R H. Leaf abscission in cotton. IV. Effects of a natural promoter and amino acids on abscission in cotyledonary node explants. Bot Gazette, 1961, 123: 29-34. |
[38] | Hall W C, Liverman J L. Effect of radiation and growth regulators on leaf abscission in seedling cotton and bean. Plant Physiol, 1956, 31: 471. |
[39] | Carns H R, Addicott F T, Lynch R S. Some effects of water and oxygen on abscission in vitro. Plant Physiol, 1951, 26: 629. |
[40] | Smith O E. Changes in abscission-accelerating substances with development of cotton fruit. New Phytol, 1969, 68: 313-322. |
[41] | Bornman C H, Spurr A R, Addicott F T. Abscisin, auxin, and gibberellin effects on the developmental aspects of abscission in cotton (Gossypium hirsutum). Am J Bot, 1967, 54: 125-135. |
[42] | Davis L A, Addicott F T. Abscisic acid: correlations with abscission and with development in the cotton fruit. Plant Physiol, 1972, 49: 644-648. |
[43] | Liu W C, Carnsdagger H R. Isolation of abscisin, an abscission accelerating substance. Science, 1961, 134: 384-385. |
[44] | Addicott F T. Environmental factors in the physiology of abscission. Plant Physiol, 1968, 43: 1471. |
[45] | Min L, Zhu L F, Tu L L, Deng F L, Yuan D J, Zhang X L. Cotton GhCKI disrupts normal male reproduction by delaying tapetum programmed cell death via inactivating starch synthase. Plant J, 2013, 75: 823-835 |
[46] | Zahid K R, Ali F, Shah F, Younas M, Shah T, Shahwar D, Hassan W, Ahmad Z, Qi C, Lu Y L, Iqbal A, Wu W. Response and tolerance mechanism of cotton Gossypium hirsutum L. to elevated temperature stress: a review. Front Plant Sci, 2016, 7: 937. |
[47] | 张永红, 葛徽衍, 李秀琳. 棉花“三桃” 蕾铃脱落的气象因素分析. 陕西气象, 2000, (2): 22-23. |
Zhang Y H, Ge H Y, Li X L. Analysis on meteorological factors of cotton “three peach” buds and bolls falling off. J Shaanxi Meteorol, 2000, (2): 22-23 (in Chinese). | |
[48] | Singh R P, Prasad P V V, Sunita K, Giri S N, Reddy K R. Influence of high temperature and breeding for heat tolerance in cotton: a review. Adv Agron, 2007, 93: 313-385. |
[49] | Lieth J H, Arkin G F, Hearn A B, Jackson B S. Modeling cotton fruiting form abscission. Agron J, 1986, 78: 730-735. |
[50] | Basal H, Dagdelen N, Unay A, Yilmaz E. Effects of deficit drip irrigation ratios on cotton (Gossypium hirsutum L.) yield and fibre quality. J Agron Crop Sci, 2009, 195: 19-29. |
[51] | Song G C, Wang M M, Zeng B, Zhang J, Jiang C L, Hu Q R, Geng G T, Tang C M. Anther response to high-temperature stress during development and pollen thermotolerance heterosis as revealed by pollen tube growth and in vitro pollen vigor analysis in upland cotton. Planta, 2015, 241: 1271-1285. |
[52] | Xu G, Wolf S, Kafkafi U. Interactive effect of nutrient concentration and container volume on flowering, fruiting, and nutrient uptake of sweet pepper. J Plant Nutr, 2001, 24: 479-501. |
[53] | Joham H E. Carbohydrate distribution as affected by calcium deficiency in cotton. Plant Physiol, 1957, 32: 113-117. |
[54] | Kihara J, Sileshi G W, Nziguheba G, Kinyua M, Zingore S, Sommer R. Application of secondary nutrients and micronutrients increases crop yields in sub-Saharan Africa. Agron Sustain Develop, 2017, 37: 1-14. |
[55] | Ohki K. Effect of zinc nutrition on photosynthesis and carbonic anhydrase activity in cotton. Physiol Plant, 1976, 38: 300-304. |
[56] | Coakley J M, Maxwell F G, Jenkins J N. Influence of feeding, oviposition, and egg and larval development of the boll weevil on abscission of cotton squares. J Econ Entomol, 1969, 62: 244-245. |
[57] | 王后苗, 廖伯寿. 农作物收获前黄曲霉毒素污染与控制措施. 作物学报, 2012, 38: 1-9. |
Wang H M, Liao B S. Preharvest aflatoxin contamination in crops and its management. Acta Agron Sin, 2012, 38: 1-9 (in Chinese with English abstract). | |
[58] | Wiese M V, Devay J E. Growth regulator changes in cotton associated with defoliation caused by Verticillium albo-atrum. Plant Physiol, 1970, 45: 304-309. |
[59] | Gulhane V A, Gurjar A A. Detection of diseases on cotton leaves and its possible diagnosis. Int J Image Proc, 2011, 5: 590-598. |
[60] | 周永萍, 张海娜, 田海燕, 葛朝红, 师树新. 棉花蕾铃脱落原因与调节控制措施. 棉花科学, 2018, 40: 41-43. |
Zhou Y P, Zhang H N, Tian H Y, Ge C /Z H, Shi S X. Causes of cotton bud and boll shedding and its adjustment and control measures. Cotton Sci, 2018, 40: 41-43 (in Chinese). | |
[61] | Ohkuma K, Addicott F T, Smith O E, Thiessen W E. The structure of abscisin II. Tetrahedron Lett, 1965, 6: 2529-2535. |
[62] | Davies P J. The plant hormones:their nature, occurrence, and functions. In Davies P J, eds. Plant Hormones. Dordrecht: Springer Netherlands, 2010. pp 1-15. |
[63] | Addicott F T, Lyon J L. Physiology of abscisic acid and related substances. Annu Rev Plant Physiol, 1969, 20: 139-164. |
[64] | Lin Z F, Zhong S L, Grierson D. Recent advances in ethylene research. J Exp Bot, 2009, 60: 3311-3336. |
[65] | Chaves A L S, de Mello-Farias P C. Ethylene and fruit ripening: from illumination gas to the control of gene expression, more than a century of discoveries. Genet Mol Biol, 2006, 29: 508-515. |
[66] | Chae H S, Faure F, Kieber J J. The eto1, eto2, and eto3 mutations and cytokinin treatment increase ethylene biosynthesis in Arabidopsis by increasing the stability of ACS protein. Plant Cell, 2003, 15: 545-559. |
[67] | Mishra A, Khare S, Trivedi P K, Nath P. Ethylene induced cotton leaf abscission is associated with higher expression of cellulase (GhCel1) and increased activities of ethylene biosynthesis enzymes in abscission zone. Plant Physiol Biochem, 2008, 46: 54-63. |
[68] | Morgan P W, Gausman H W. Effects of ethylene on auxin transport. Plant Physiol, 1966, 41: 45-52. |
[69] | Abeles F B, Leather G R, Forrence L E, Craker L E. Abscission: regulation of senescence, protein synthesis, and enzyme secretion by ethylene. HortScience, 1971, 6: 371-376. |
[70] | Morgan P W, Durham J I. Ethylene-induced leaf abscission is promoted by gibberellic acid. Plant Physiol, 1975, 55: 308-311. |
[71] | Roberts J A, Whitelaw C A, Gonzalez-Carranza Z H, McManus M T. Cell separation processes in plants-models, mechanisms and manipulation. Ann Bot, 2000, 86: 223-235. |
[72] | Bonghi C, Tonutti P, Ramina A. Biochemical and molecular aspects of fruitlet abscission. Plant Growth Regul, 2000, 31: 35-42. |
[73] | Benavente L M, Alonso J M. Molecular mechanisms of ethylene signaling in Arabidopsis. Plant Cell, 2006, 2: 165-173. |
[74] | Lipe J A, Morgan P W. Location of ethylene production in cotton flowers and dehiscing fruits. Planta, 1973, 115: 93-96. |
[75] | Lipe J A, Morgan P W. Ethylene, a regulator of young fruit abscission. Plant Physiol, 1973, 51: 949-953. |
[76] | Clark D G, Richards C, Hilioti Z, Lind-Iversen S, Brown K. Effect of pollination on accumulation of ACC synthase and ACC oxidase transcripts, ethylene production and flower petal abscission in Geranium (Pelargonium × hortorum L. H. Bailey). Plant Mol Biol, 1997, 34: 855-865. |
[77] | Du M W, Li Y, Tian X L, Duan L S, Zhang M C, Tan W M, Xu D Y, Li Z H. The phytotoxin coronatine induces abscission-related gene expression and boll ripening during defoliation of cotton. PLoS One, 2014, 9: e97652. |
[78] | Rai A C, Halon E, Zemach H, Zviran T, Sisai I, Philosoph-Hadas S, Meir S, Cohen Y, Irihimovitch V. Characterization of two ethephon-induced IDA-like genes from mango, and elucidation of their involvement in regulating organ abscission. Genes, 2021, 12: 439. |
[79] | Sundaresan S, Philosoph-Hadas S, Ma C, Jiang C Z, Riov J, Mugasimangalam R, Kochanek B, Salim S, Reid M S, Meir S. The Tomato Hybrid Proline-rich Protein regulates the abscission zone competence to respond to ethylene signals. Hortic Res, 2018, 5: 28. |
[80] | Wang R, Li R Z, Cheng L N, Wang X Y, Fu X, Dong X F, Qi M F, Jiang C Z, Xu T, Li T L. SlERF52 regulates SlTIP1;1 expression to accelerate tomato pedicel abscission. Plant Physiol, 2021, 185: 1829-1846. |
[81] | Li R Z, Shi C L, Wang X Y, Meng Y, Cheng L N, Jiang C Z, Qi M F, Xu T, Li T L. Inflorescence abscission protein SlIDL6 promotes low light intensity-induced tomato flower abscission. Plant Physiol, 2021, 186: 1288-1301. |
[82] | Abeles F B, Wydoski S G. Inhibitors of ethylene synthesis and action: a comparison of their activities in a lettuce root growth model system. J Am Soc Hortic Sci, 1987, 112: 122-125. |
[83] | Cameron A C, Reid M S. Use of silver thiosulfate to prevent flower abscission from potted plants. Sci Hortic, 1983, 19: 373-378. |
[84] | Serek M, Sisler E C, Reid M S. Novel gaseous ethylene binding inhibitor prevents ethylene effects in potted flowering plants. Jashs, 1994, 119: 1230-1233. |
[85] | Okabe Y, Asamizu E, Saito T, Matsukura C, Ariizumi T, Brès C, Rothan C, Mizoguchi T, Ezura H. Tomato TILLING technology: development of a reverse genetics tool for the efficient isolation of mutants from Micro-Tom mutant libraries. Plant Cell Physiol, 2011, 52: 1994-2005. |
[86] | Patterson S E, Bleecker A B. Ethylene-dependent and-independent processes associated with floral organ abscission in Arabidopsis. Plant Cell, 2004, 134: 194-203. |
[87] | Estornell L H, Agustí J, Merelo P, Talón M, Tadeo F R. Elucidating mechanisms underlying organ abscission. Plant Sci, 2013, 199/200: 48-60. |
[88] | Manghwar H, Hussain A, Ali Q, Liu F. Brassinosteroids (BRs) role in plant development and coping with different stresses. Int J Mol Sci, 2022, 23: 1012. |
[89] | Suttle J C, Abrams S R. Abscission-promoting activities of abscisic acid and five abscisic acid analogs in cotton seedlings and explants. Plant Growth Regul, 1993, 12: 111-117. |
[90] | Jan M, Liu Z X, Guo C X, Sun X W. Molecular regulation of cotton fiber development: a review. Int J Mol Sci, 2022, 23: 5004. |
[91] | Craker L E, Abeles F B. Abscission: quantitative measurement with a recording abscissor. Plant Physiol, 1969, 44: 1139-1143. |
[92] | Zhang Y L, Zhang R G. Effects of ABA content on the development of abscission zone and berry falling after harvesting of grapes. Agric Sci China, 2009, 8: 59-67. |
[93] | Zeevaart J D, Creelman R A. Metabolism and physiology of abscisic acid. Annu Rev Plant Physiol Plant Mol Biol, 1988, 39: 439-473. |
[94] | Talon M, Tadeo F R, Ben-Cheikh W, Gomez-Cadenas A, Mehouachi J, Pérez-Botella J, Primo-Millo E. Hormonal regulation of fruit set and abscission in Citrus: classical concepts and new evidence. Acta Hortic, 1998, 463: 209-217. |
[95] | Gómez-Cadenas A, Mehouachi J, Tadeo F R, Primo-Millo E, Talon M. Hormonal regulation of fruitlet abscission induced by carbohydrate shortage in Citrus. Plant Cell, 2000, 210: 636-643. |
[96] | Botton A, Eccher G, Forcato C, Ferrarini A, Begheldo M, Zermiani M, Moscatello S, Battistelli A, Velasco R, Ruperti B, Ramina A. Signaling pathways mediating the induction of apple fruitlet abscission. Plant Physiol, 2011, 155: 185-208. |
[97] | Wilmowicz E, Frankowski K, Kućko A, Świdziński M, de Diosché J de Dios Alché J, Nowakowska A, Kopcewicz J. The influence of abscisic acid on the ethylene biosynthesis pathway in the functioning of the flower abscission zone in Lupinus luteus. Plant Cell, 2016, 206: 49-58. |
[98] | Christmann A, Hoffmann T, Teplova I, Grill E, Müller A. Generation of active pools of abscisic acid revealed by in vivo imaging of water-stressed Arabidopsis. Plant Cell, 2005, 137: 209-219. |
[99] | Giulia E, Alessandro B, Mariano D, Andrea B, Benedetto R, Angelo R. Early induction of apple fruitlet abscission is characterized by an increase of both isoprene emission and abscisic acid content. Plant Physiol, 2013, 161: 1952-1969. |
[100] | Ariel F D, Manavella P A, Dezar C A, Chan R L. The true story of the HD-Zip family. Trends Plant Sci, 2007, 12: 419-426. |
[101] | Li C Q, Ma X S, Huang X M, Wang H C, Wu H, Zhao M L, Li J G. Involvement of HD-ZIP I transcription factors LcHB2 and LcHB3 in fruitlet abscission by promoting transcription of genes related to the biosynthesis of ethylene and ABA in Litchi. Plant Cell, 2019, 39: 1600-1613. |
[102] | Gamble P E, Mullet J E. Inhibition of carotenoid accumulation and abscisic acid biosynthesis in fluridone-treated dark-grown barley. Eur J Biochem, 1986, 160: 117-121. |
[103] | Moore R, Smith J D. Growth, graviresponsiveness and abscisic-acid content of Zea mays seedlings treated with Fluridone. Planta, 1984, 162: 342-344. |
[104] | Stegink S J, Vaughn K C. Norflurazon (SAN-9789) reduces abscisic acid levels in cotton seedlings: a glandless isoline is more sensitive than its glanded counterpart. Pestic Biochem Physiol, 1988, 31: 269-275. |
[105] | Henson I E. Inhibition of abscisic acid accumulation in seedling shoots of pearl millet (Pennisetum americanum[L.] leeke) following induction of chlorosis by norflurazon. Z Für Pflanzenphysiol, 1984, 114: 35-43. |
[106] | Le Page-Degivry M T, Garello G. In situ abscisic acid synthesis: a requirement for induction of embryo dormancy in Helianthus annuus. Plant Cell, 1992, 98: 1386-1390. |
[107] | Umezawa T, Nakashima K, Miyakawa T, Kuromori T, Tanokura M, Shinozaki K, Yamaguchi-Shinozaki K. Molecular basis of the core regulatory network in ABA responses: sensing, signaling and transport. Plant Cell Physiol, 2010, 51: 1821-1839. |
[108] | Uozu S, Tanaka-Ueguchi M, Kitano H, Hattori K, Matsuoka M. Characterization of XET-related genes of rice. Plant Physiol, 2000, 122: 853-859. |
[109] | Rodgers J P. Plant Growth Substances in Relation to Fruit Development and Fruit Abscission in Cotton. PhD Dissertation of The University of Rhodesia, Rhodesia, South Africa, 1977. |
[110] | Bhardwaj S N, Dua I S. Physiology of boll shedding in cotton. 6. Evaluation of hormonal basis of varietal variation of boll shedding in American cotton (Gossypium hirsutum L.). Indian J Agric Sci, 1972, 42: 300-307. |
[111] | Johnson R E, Addicott F T. Boll retention in relation to leaf and boll development in cotton (Gossypium hirsutum L.). Crop Sci, 1967, 7: 571-574. |
[112] | 许德威, 郑泽荣. 赤霉素对乙烯诱导棉铃脱落的拮抗作用. 植物学报, 1982, 24(2): 130-134. |
Xu D W, Zheng Z R. Antagonism of gibberellin to the ethrel induced abscission of cotton boll. J Integr Plant Biol, 1982, 24: 130-134 (in Chinese with English abstract). | |
[113] | Tariq M, Yasmeen A, Ahmad S, Hussain N, Afzal M N, Hasanuzzaman M. Shedding of fruiting structures in cotton: factors, compensation and prevention. Trop Subtrop Agroecosyst, 2017, 20: 251-262. |
[114] | Wang F, Wang C, Yan Y, Jia H H, Guo X Q. Overexpression of cotton GhMPK11 decreases disease resistance through the gibberellin signaling pathway in transgenic Nicotiana benthamiana. Plant Cell, 2016, 7: 689. |
[115] | Ray PM. Principles of plant cell growth. In: Cosgrove D J, Knievel D P, eds. Physiology of Cell Expansion During Plant Growth. American Soc Pl Physiologists, Rockville, MD, 1987. pp 1-17. |
[116] | Kućko A, Wilmowicz E, Pokora W, Alché J D. Disruption of the auxin gradient in the abscission zone area evokes asymmetrical changes leading to flower separation in yellow lupine. Int J Mol Sci, 2020, 21: 3815. |
[117] | Zhao Y, Christensen S K, Fankhauser C, Cashman J R, Cohen J D, Weigel D, Chory J. A role for flavin monooxygenase-like enzymes in auxin biosynthesis. Science, 2001, 291: 306-309. |
[118] | Meir S, Philosoph-Hadas S, Riov J, Tucker M L, Patterson S E, Roberts J A. Re-evaluation of the ethylene-dependent and-independent pathways in the regulation of floral and organ abscission. J Exp Bot, 2019, 70: 1461-1467. |
[119] | Brown KM. Ethylene and abscission. Physiol Planta, 1997, 100: 567-576. |
[120] | van Nocker S. Development of the abscission zone. Stewart Postharvest Rev, 2009, 5: 1-6. |
[121] | Osborne D J. Auxin and Ethylene and the Control of Cell Growth. Identification of Three Classes of Target cells. In: Proceedings in Life Sciences. Berlin, Heidelberg: Springer Berlin Heidelberg, 1977. pp 161-171. |
[122] | Taylor J E, Whitelaw C A. Signals in abscission. New Phytol, 2001, 151: 323-340. |
[123] | Ellis C M, Nagpal P, Young J C, Hagen G, Guilfoyle T J, Reed J W. Auxin response factor1 and auxin response factor2 regulate senescence and floral organ abscission in Arabidopsis thaliana. Plant Cell, 2005, 132: 4563-4574. |
[124] | Wilmoth J C, Wang S C, Tiwari S B, Joshi A D, Hagen G, Guilfoyle T J, Alonso J M, Ecker J R, Reed J W. NPH4/ARF7 and ARF19 promote leaf expansion and auxin-induced lateral root formation. Plant J, 2005, 43: 118-130. |
[125] | Zhang X S, O’Neill S D. Ovary and gametophyte development are coordinately regulated by auxin and ethylene following pollination. Plant Cell, 1993, 5: 403-418. |
[126] | Jones M L, Woodson W R. Differential expression of three members of the 1-aminocyclopropane-1-carboxylate synthase gene family in carnation. Plant Physiol, 1999, 119: 755-764. |
[127] | Llop-Tous I, Barry C S, Grierson D. Regulation of ethylene biosynthesis in response to pollination in tomato flowers. Plant Physiol, 2000, 123: 971-978. |
[128] | Okushima Y, Mitina I, Quach H L, Theologis A. AUXIN RESPONSE FACTOR 2 (ARF2): a pleiotropic developmental regulator. Plant J, 2005, 43: 29-46. |
[129] | Zhu H, Dardick C D, Beers E P, Callanhan A M, Xia R, Yuan R C. Transcriptomics of shading-induced and NAA-induced abscission in apple (Malus domestica) reveals a shared pathway involving reduced photosynthesis, alterations in carbohydrate transport and signaling and hormone crosstalk. BMC Plant Biol, 2011, 11: 138. |
[130] | Kuang J F, Wu J Y, Zhong H Y, Li C Q, Chen J Y, Lu W J, Li J G. Carbohydrate stress affecting fruitlet abscission and expression of genes related to auxin signal transduction pathway in Litchi. Plant Cell, 2012, 13: 16084-16103. |
[131] | Hou K, Wu W, Gan S S. SAUR36 a small auxin up RNA gene, is involved in the promotion of leaf senescence in Arabidopsis. Plant Physiol, 2013, 161: 1002-1009. |
[132] | Kant S, Bi Y M, Zhu T, Rothstein S J. SAUR39 a small auxin-up RNA gene, acts as a negative regulator of auxin synthesis and transport in rice. Plant Physiol, 2009, 151: 691-701. |
[133] | Xie R J, Dong C C, Ma Y Y, Deng L, He S L, Yi S L, Lv Q, Zheng Y Q. Comprehensive analysis of SAUR gene family in Citrus and its transcriptional correlation with fruitlet drop from abscission zone A. Funct Integr Genomics, 2015, 15: 729-740. |
[134] | Hare P D, Cress W A, van Staden J. The involvement of cytokinins in plant responses to environmental stress. Plant Growth Regul, 1997, 23: 79-103. |
[135] | Varma S. Reversal of abscisic acid promoted abscission of flower buds and bolls of coton (Gossypium hirsutum L.) with other regulators. Indian J Exp Biol, 1976, 29: 34-43. |
[136] | Sipes D L, Einset J W. Cytokinin stimulation of abscission in lemon pistil explants. J Plant Growth Regul, 1983, 2: 73-80. |
[137] | Rodgers J P. Cotton fruit development and abscission: fluctuations in the levels of cytokinins. J Hortic Sci, 1981, 56: 99-106. |
[138] | Le Bris M. Hormones in growth and development. Reference Module in Life Sciences. Amsterdam: Elsevier, 2017. |
[139] | Dal Cin V, Boschetti A, Dorigoni A, Ramina A. Benzylaminopurine application on two different apple cultivars (Malus domestica) displays new and unexpected fruitlet abscission features. Ann Bot, 2007, 99: 1195-1202. |
[140] | Botton A, Eccher G, Forcato C, Ferrarini A, Begheldo M, Zermiani M, Moscatello S, Battistelli A, Velasco R, Ruperti B, Ramina A. Signaling pathways mediating the induction of apple fruitlet abscission. Plant Physiol, 2011, 155: 185-208. |
[141] | Suttle J C. Disruption of the polar auxin transport system in cotton seedlings following treatment with the defoliant thidiazuron. Plant Physiol, 1988, 86: 241-245. |
[142] | Xu J, Chen L, Sun H, Wusiman N, Sun W N, Li B Q, Gao Y, Kong J, Zhang D W, Zhang X L, Xu H J, Yang X Y. Crosstalk between cytokinin and ethylene signaling pathways regulates leaf abscission in cotton in response to chemical defoliants. J Exp Bot, 2019, 70: 1525-1538. |
[143] | Li F J, Wu Q, Liao B P, Yu K K, Huo Y N, Meng L, Wang S M, Wang B M, Du M W, Tian X L, Li Z H. Thidiazuron promotes leaf abscission by regulating the crosstalk complexities between ethylene, auxin, and cytokinin in cotton. Int J Mol Sci, 2022, 23: 2696. |
[144] | Liao B P, Li F J, Yi F, Du M W, Tian X L, Li Z H. Comparative physiological and transcriptomic mechanisms of defoliation in cotton in response to thidiazuron versus ethephon. Int J Mol Sci, 2023, 24: 7590. |
[145] | Gan S, Amasino R M. Inhibition of leaf senescence by autoregulated production of cytokinin. Science, 1995, 270: 1986-1988. |
[146] | 李静, 沈法富, 于东海, 韩秀兰. 转基因抗早衰棉的获得. 西北植物学报, 2004, 24: 1419-1423. |
Li J, Shen F F, Yu D H, Han X L. The obtaining of transgenic cottons resistant to premature senescence. Acta Bot Boreali-Occident Sin, 2004, 24: 1419-1423 (in Chinese with English abstract). | |
[147] | Hajouj T, Michelis R, Gepstein S. Cloning and characterization of a receptor-like protein kinase gene associated with senescence. Plant Physiol, 2000, 124: 1305-1314. |
[148] | Rivero R M, Gimeno J, Van Deynze A, Walia H, Blumwald E. Enhanced cytokinin synthesis in tobacco plants expressing PSARK: IPT prevents the degradation of photosynthetic protein complexes during drought. Plant Cell Physiol, 2010, 51: 1929-1941. |
[149] | Peleg Z, Reguera M, Tumimbang E, Walia H, Blumwald E. Cytokinin-mediated source/sink modifications improve drought tolerance and increase grain yield in rice under water-stress. Plant Biotechnol J, 2011, 9: 747-758. |
[150] | Kuppu S, Mishra N, Hu R B, Sun L, Zhu X L, Shen G X, Blumwald E, Payton P, Zhang H. Water-deficit inducible expression of a cytokinin biosynthetic gene IPT improves drought tolerance in cotton. PLoS One, 2013, 8: e64190. |
[151] | Liu Y D, Yin Z J, Yu J W, Li J, Wei H L, Han X L, Shen F F. Improved salt tolerance and delayed leaf senescence in transgenic cotton expressing the Agrobacterium IPT gene. Biol Plant, 2012, 56: 237-246. |
[152] | Luo Y Y, Gianfagna T J, Janes H W, Huang B, Wang Z, Xing J. Expression of the ipt gene with the AGPase S1 promoter in tomato results in unbranched roots and delayed leaf senescence. Plant Growth Regul, 2005, 47: 47-57. |
[153] | Swartzberg D, Dai N, Gan S, Amasino R, Granot D. Effects of cytokinin production under two SAG promoters on senescence and development of tomato plants. Plant Biol, 2006, 8: 579-586. |
[154] | Liu L, Zhou Y, Szczerba M W, Li X H, Lin Y J. Identification and application of a rice senescence-associated promoter. Plant Physiol, 2010, 153: 1239-1249. |
[155] | Beltrano J, Ronco M G, Montaldi E R, Carbone A. Senescence of flag leaves and ears of wheat hastened by methyl jasmonate. J Plant Growth Regul, 1998, 17: 53-57. |
[156] | Gross D, Parthier B. Novel natural substances acting in plant growth regulation. J Plant Growth Regul, 1994, 13: 93-114. |
[157] | Luna E, Pastor V, Robert J, Flors V, Mauch-Mani B, Ton J. Callose deposition: a multifaceted plant defense response. Mol Plant Microbe Interact, 2011, 24: 183-193. |
[158] | Saniewski M, Gajewska E, Urbanek H. Activity of cell wall degrading glycanases in methyl jasmonate-induced leaf abscission in Kalanchoe blossfeldiana. Plant Cell, 2013, 48: 69-74. |
[159] | Liu X F, Cheng L N, Li R Z, Cai Y, Wang X Y, Fu X, Dong X F, Qi M F, Jiang C Z, Xu T, Li T L. The HD-Zip transcription factor SlHB15A regulates abscission by modulating jasmonoyl-isoleucine biosynthesis. Plant Physiol, 2022, 189: 2396-2412. |
[160] | Saniewski M, Ueda J, Miyamoto K. Methyl jasmonate induces the formation of secondary abscission zone in stem of Bryophyllum calycinum Salisb. Acta Physiol Plant, 2000, 22: 17-23. |
[161] | Fernández-Calvo P, Chini A, Fernández-Barbero G, Chico J M, Gimenez-Ibanez S, Geerinck J, Eeckhout D, Schweizer F, Godoy M, Franco-Zorrilla J M, Pauwels L, Witters E, Puga M I, Paz-Ares J, Goossens A, Reymond P, De Jaeger G, Solano R. The Arabidopsis bHLH transcription factors MYC3 and MYC4 are targets of JAZ repressors and act additively with MYC2 in the activation of jasmonate responses. Plant Cell, 2011, 23: 701-715. |
[162] | Kim J. Four shades of detachment: regulation of floral organ abscission. Plant Signal Behav, 2014, 9: e976154. |
[163] | Zhang S W, Yuan C, An L Y, Niu Y, Song M, Tang Q L, Wei D Y, Tian S B, Wang Y Q, Yang Y, Wang Z M. SmCOI1 affects anther dehiscence in a male-sterile Solanum melongena line. Plant Biotechnol, 2020, 37: 1-8. |
[164] | Kim J, Patterson S E, Binder B M. Reducing jasmonic acid levels causes ein2 mutants to become ethylene responsive. FEBS Lett, 2013, 587: 226-230. |
[165] | Ogawa M, Kay P, Wilson S, Swain S M. ARABIDOPSIS DEHISCENCE ZONE POLYGALACTURONASE1 (ADPG1), ADPG2, and QUARTET2 are Polygalacturonases required for cell separation during reproductive development in Arabidopsis. Plant Cell, 2009, 21: 216-233. |
[166] | Tabata R, Ikezaki M, Fujibe T, Aida M, Tian C G, Ueno Y, Yamamoto K T, Machida Y, Nakamura K, Ishiguro S. Arabidopsis auxin response factor6 and 8 regulate jasmonic acid biosynthesis and floral organ development via repression of class 1 KNOX genes. Plant Cell Physiol, 2010, 51: 164-175. |
[167] | Ju L, Jing Y X, Shi P T, Liu J, Chen J S, Yan J J, Chu J F, Chen K M, Sun J Q. JAZ proteins modulate seed germination through interaction with ABI5 in bread wheat and Arabidopsis. Plant Cell, 2019, 223: 246-260. |
[168] | Wang K, Guo Q, Froehlich J E, Hersh H L, Zienkiewicz A, Howe G A, Benning C. Two abscisic acid-responsive plastid lipase genes involved in jasmonic acid biosynthesis in Arabidopsis thaliana. Plant Cell, 2018, 30: 1006-1022. |
[169] | Hazman M, Hause B, Eiche E, Nick P, Riemann M. Increased tolerance to salt stress in opda-deficient rice allene oxide cyclase mutants is linked to an increased ros-scavenging activity. J Exp Bot, 2015, 66: 3339-3352. |
[170] | Wang Y F, Hou Y X, Qiu J H, Wang H M, Wang S, Tang L Q, Tong X H, Zhang J. Abscisic acid promotes jasmonic acid biosynthesis via a ‘SAPK10-bZIP72-AOC’ pathway to synergistically inhibit seed germination in rice (Oryza sativa). New Phytol, 2020, 228: 1336-1353. |
[171] | Memelink J. Regulation of gene expression by jasmonate hormones. Phytochemistry, 2009, 70: 1560-1570. |
[172] | Kaur Sawhney R, Shekhawat N S, Galston A W. Polyamine levels as related to growth, differentiation and senescence in protoplast-derived cultures of Vigna aconitifolia and Avena sativa. Plant Cell, 1985, 3: 329-337. |
[173] | Kakkar R K, Rai V K. Plant polyamines in flowering and fruit ripening. Phytochemistry, 1993, 33: 1281-1288. |
[174] | Kloareg B, Broquedis M, Joubert J M. Fruit development: Elicitor effects of biostimulants. Arboriculture Fruitiere, 1996, 498: 39-42. |
[175] | Gomez-Jimenez M C, Paredes M A, Gallardo M, Sanchez-Calle I M. Mature fruit abscission is associated with up-regulation of polyamine metabolism in the olive abscission zone. J Plant Physiol, 2010, 167: 1432-1441. |
[176] | Parra-Lobato M C, Gomez-Jimenez M C. Polyamine-induced modulation of genes involved in ethylene biosynthesis and signalling pathways and nitric oxide production during olive mature fruit abscission. J Exp Bot, 2011, 62: 4447-4465. |
[177] | Apelbaum A, Goldlust A, Icekson I. Control by ethylene of arginine decarboxylase activity in pea seedlings and its implication for hormonal regulation of plant growth. Plant Physiol, 1985, 79: 635-640. |
[178] | Mattoo A K, Handa A K. Higher polyamines restore and enhance metabolic memory in ripening fruit. Plant Sci, 2008, 174: 386-393. |
[179] | Bregoli A M, Ziosi V, Biondi S, Claudio B, Costa G, Torrigiani P. A comparison between intact fruit and fruit explants to study the effect of polyamines and aminoethoxyvinylglycine (AVG) on fruit ripening in peach and nectarine (Prunus persica L. Batch). Postharvest Biol Technol, 2006, 42: 31-40. |
[180] | Malik A U, Singh Z. Abscission of mango fruitlets as influenced by biosynthesis of polyamines. J Hortic Sci Biotechnol, 2003, 78: 721-727. |
[181] | Aziz A, Brun O, Audran J C. Involvement of polyamines in the control of fruitlet physiological abscission in grapevine (Vitis vinifera). Physiol Plant, 2001, 113: 50-58. |
[182] | Aziz A. Spermidine and related-metabolic inhibitors modulate sugar and amino acid levels in Vitis vinifera L.: possible relationships with initial fruitlet abscission. J Exp Bot, 2003, 54: 355-363. |
[183] | Bibi A C, Oosterhuis D M, Gonias E D. Exogenous application of putrescine ameliorates the effect of high temperature in Gossypium hirsutum L. flowers and fruit development. J Agron Crop Sci, 2010, 196: 205-211. |
[184] | Gurung S, Cohen M F, Fukuto J, Yamasaki H. Polyamine-induced rapid root abscission in Azolla pinnata. Plant Cell, 2012, 2012: 55-63. |
[185] | Moschou P N, Wu J, Cona A, Tavladoraki P, Angelini R, Roubelakis-Angelakis K A. The polyamines and their catabolic products are significant players in the turnover of nitrogenous molecules in plants. J Exp Bot, 2012, 63: 5003-5015. |
[186] | Pitino M, Armstrong C M, Duan Y P. Molecular mechanisms behind the accumulation of ATP and H2O2 in Citrus plants in response to ‘Candidatus Liberibacter asiaticus’ infection. Hortic Res, 2017, 4: 17040. |
[187] | Gil-Amado J A, Gomez-Jimenez M C. Regulation of polyamine metabolism and biosynthetic gene expression during olive mature-fruit abscission. Planta, 2012, 235: 1221-1237. |
[188] | Li J, Nagpal P, Vitart V, McMorris T C, Chory J. A role for brassinosteroids in light-dependent development of Arabidopsis. Plant Cell, 1996, 272: 398-401. |
[189] | Choudhary S P, Yu J Q, Yamaguchi-Shinozaki K, Shinozaki K, Tran L S P. Benefits of brassinosteroid crosstalk. Trends Plant Sci, 2012, 17: 594-605. |
[190] | Chen Y C. Phytohormone-Mediated Ethylene Biosynthesis in Arabidopsis thaliana. MS Thesis of Purdue University, Indiana, USA, 2017. |
[191] | Gampala S S, Kim T W, He J X, Tang W Q, Deng Z P, Bai M Y, Guan S H, Lalonde S, Sun Y, Gendron J M, Chen H J, Shibagaki N, Ferl R J, Ehrhardt D, Chong K, Burlingame A L, Wang Z Y. An essential role for 14-3-3 proteins in brassinosteroid signal transduction in Arabidopsis. Plant Cell, 2007, 13: 177-189. |
[192] | Ma X S, Yuan Y, Li C Q, Wu Q, He Z D, Li J G, Zhao M L. Brassinosteroids suppress ethylene-induced fruitlet abscission through LcBZR1/2-mediated transcriptional repression of LcACS1/4 and LcACO2/3 in Litchi. Plant Cell, 2021, 8: 105. |
[193] | Santiago J, Brandt B, Wildhagen M, Hohmann U, Hothorn L A, Butenko M A, Hothorn M. Mechanistic insight into a peptide hormone signaling complex mediating floral organ abscission. eLife, 2016, 5: e15075. |
[194] | Lv B S, Tian H Y, Zhang F, Liu J J, Lu S C, Bai M Y, Li C Y, Ding Z J. Brassinosteroids regulate root growth by controlling reactive oxygen species homeostasis and dual effect on ethylene synthesis in Arabidopsis. Plant Cell, 2018, 14: e1007144. |
[195] | Zhu T, Tan W R, Deng X G, Zheng T, Zhang D W, Lin H H. Effects of brassinosteroids on quality attributes and ethylene synthesis in postharvest tomato fruit. Postharvest Biol Technol, 2015, 100: 196-204. |
[196] | He Y H, Li J Y, Ban Q Y, Han S K, Rao J P. Role of brassinosteroids in persimmon (Diospyros kaki L.) fruit ripening. J Agric Food Chem, 2018, 66: 2637-2644. |
[197] | Guo Y F, Shan W, Liang S M, Wu C J, Wei W, Chen J Y, Lu W J, Kuang J F. MaBZR1/2 act as transcriptional repressors of ethylene biosynthetic genes in banana fruit. Physiol Plant, 2019, 165: 555-568. |
[198] | Iwahori S, Tominaga S, Higuchi S. Retardation of abscission of Citrus leaf and fruitlet explants by brassinolide. Plant Growth Regul, 1990, 9: 119-125. |
[199] | Gil-Amado J A, Gomez-Jimenez M C. Transcriptome analysis of mature fruit abscission control in olive. Plant Cell Physiol, 2013, 54: 244-269. |
[200] | Chen E Y, Zhang X Y, Yang Z R, Zhang C J, Wang X Q, Ge X Y, Li F G. BR deficiency causes increased sensitivity to drought and yield penalty in cotton. BMC Plant Biol, 2019, 19: 220. |
[201] | Gao W, Long L, Zhu L F, Xu L, Gao W H, Sun L Q, Liu L L, Zhang X L. Proteomic and virus-induced gene silencing (VIGS) Analyses reveal that gossypol, brassinosteroids, and jasmonic acid contribute to the resistance of cotton to Verticillium dahliae. Plant Cell, 2013, 12: 3690-3703. |
[202] | Sun Y, Veerabomma S, Abdel-Mageed H A, Fokar M, Asami T, Yoshida S, Allen R D. Brassinosteroid regulates fiber development on cultured cotton ovules. Plant Cell Physiol, 2005, 46: 1384-1391. |
[203] | Kamiab F. 24-Epibrassinolide improves some physiological disorders in pistachio cultivars. Adv Hortic Sci, 2018, 32: 3-12. |
[204] | de Menezes Assis Gomes M, Campostrini E, Leal N R, Viana A P, Ferraz T M, do Nascimento Siqueira L, Rosa R C C, Netto A T, Nuñez-Vázquez M, Zullo M A T. Brassinosteroid analogue effects on the yield of yellow passion fruit plants (Passiflora edulis f. flavicarpa). Sci Hortic, 2006, 110: 235-240. |
[205] | Ramraj V M, Vyas B N, Godrej N B, Mistry K B, Swami B N, Singh N. Effects of 28-homobrassinolide on yields of wheat, rice, groundnut, mustard, potato and cotton. J Agric Sci, 1997, 128: 405-413. |
[206] | Ryals J, Uknes S, Ward E. Systemic acquired resistance. Plant Physiol, 1994, 104: 1109-1112. |
[207] | Shoresh M, Harman G E, Mastouri F. Induced systemic resistance and plant responses to fungal biocontrol agents. Annu Rev Phytopathol, 2010, 48: 21-43. |
[208] | White R F. Acetylsalicylic acid (aspirin) induces resistance to tobacco mosaic virus in tobacco. Virology, 1979, 99: 410-412. |
[209] | Eckardt N A. A new twist on systemic acquired resistance: redox control of the NPR1-TGA1 interaction by salicylic acid. Plant Cell, 2003, 15: 1947-1949. |
[210] | Hepworth S R, Zhang Y L, McKim S, Li X, Haughn G W. BLADE-ON-PETIOLE-dependent signaling controls leaf and floral patterning in Arabidopsis. Plant Cell, 2005, 17: 1434-1448. |
[211] | Spoel S H, Koornneef A, Claessens S M C, Korzelius J P, Van Pelt J A, Mueller M J, Buchala A J, Métraux J P, Brown R, Kazan K, Van Loon L C, Dong X N, Pieterse C M J. NPR1 modulates cross-talk between salicylate- and jasmonate-dependent defense pathways through a novel function in the cytosol. Plant Cell, 2003, 15: 760-770. |
[212] | de Almeida FC, de Camargo Cham J F L, Ham B L, Ferreira S M, Gabbardo M, del Aguila J S. Use of plant growth regulators in the conservation of grapes “Italy” as aids in post-harvest. In:Bio Web of Conferences. EDP Sci, 2014, 3: 1003. |
[213] | Patharkar O R, Gassmann W, Walker J C. Leaf shedding as an anti-bacterial defense in Arabidopsis cauline leaves. PLoS Genet, 2017, 13: e1007132. |
[214] | Morris K, Mackerness S A H, Page T, John C F, Murphy A M, Carr J P, Buchanan-Wollaston V. Salicylic acid has a role in regulating gene expression during leaf senescence. Plant J, 2000, 23: 677-685. |
[215] | Pearce G, Strydom D, Johnson S, Ryan C A. A polypeptide from tomato leaves induces wound-inducible proteinase inhibitor proteins. Science, 1991, 253: 895-897. |
[216] | Vie A K, Najafi J, Liu B, Winge P, Butenko M A, Hornslien K S, Kumpf R, Aalen R B, Bones A M, Brembu T. The IDA/IDA-LIKE and PIP/PIP-LIKE gene families in Arabidopsis: phylogenetic relationship, expression patterns, and transcriptional effect of the PIPL3 peptide. J Exp Bot, 2015, 66: 5351-5365. |
[217] | Tranbarger T J, Domonhédo H, Cazemajor M, Dubreuil C, Fischer U, Morcillo F. The pip peptide of inflorescence deficient in abscission enhances Populus leaf and Elaeis guineensis fruit abscission. Plants (Basel), 2019, 8: 143. |
[218] | Meng X Z, Zhou J G, Tang J, Li B, de Oliveira M V V, Chai J J, He P, Shan L B. Ligand-induced receptor-like kinase complex regulates floral organ abscission in Arabidopsis. Plant Cell, 2016, 14: 1330-1338. |
[219] | Butenko M A, Shi C L, Aalen R B. KNAT1, KNAT2 and KNAT6 act downstream in the IDA-HAE/HSL2 signaling pathway to regulate floral organ abscission. Plant Signal Behav, 2012, 7: 135-138. |
[220] | Wang F, Zheng Z H, Yuan Y, Li J G, Zhao M L. Identification and characterization of HAESA-like genes involved in the fruitlet abscission in Litchi. Plant Cell, 2019, 20: 5945. |
[221] | Wilmowicz E, Kućko A, Ostrowski M, Panek K. INFLORESCENCE DEFICIENT IN ABSCISSION-like is an abscission-associated and phytohormone-regulated gene in flower separation of Lupinus luteus. Plant Cell, 2018, 85: 91-100. |
[222] | Ying P Y, Li C Q, Liu X C, Xia R, Zhao M L, Li J G. Identification and molecular characterization of an IDA-like gene from Litchi, LcIDL1, whose ectopic expression promotes floral organ abscission in Arabidopsis. Sci Rep, 2016, 6: 37135. |
[223] | Zhao M L, Li C Q, Ma X S, Xia R, Chen J Y, Liu X C, Ying P Y, Peng M J, Wang J, Shi C L, Li J G. KNOX protein KNAT1 regulates fruitlet abscission in Litchi by repressing ethylene biosynthetic genes. J Exp Bot, 2020, 71: 4069-4082. |
[224] | Wilmowicz E, Kućko A, Pokora W, Kapusta M, Jasieniecka- Gazarkiewicz K, Tranbarger T J, Wolska M, Panek K. EPIP- evoked modifications of redox, lipid, and pectin homeostasis in the abscission zone of lupine flowers. Int J Mol Sci, 2021, 22: 3001. |
[225] | Reichardt S, Piepho H P, Stintzi A, Schaller A. Peptide signaling for drought-induced tomato flower drop. Science, 2020, 367: 1482-1485. |
[226] | Wu X M, Yu Y, Han L B, Li C L, Wang H Y, Zhong N Q, Yao Y, Xia G X. The tobacco BLADE-ON-PETIOLE2 gene mediates differentiation of the Corolla abscission zone by controlling longitudinal cell expansion. Plant Physiol, 2012, 159: 835-850. |
[227] | Butenko M A, Patterson S E, Grini P E, Stenvik G E, Amundsen S S, Mandal A, Aalen R B. Inflorescence deficient in abscission controls floral organ abscission in Arabidopsis and identifies a novel family of putative ligands in plants. Plant Cell, 2003, 15: 2296-2307. |
[228] | McKim S M, Stenvik G E, Butenko M A, Kristiansen W, Cho S K, Hepworth S R, Aalen R B, Haughn G W. The BLADE-ON- PETIOLE genes are essential for abscission zone formation in Arabidopsis. Plant Cell, 2008, 135: 1537-1546. |
[229] | Ventimilla D, Velázquez K, Ruiz-Ruiz S, Terol J, Pérez-Amador M A, Vives M C, Guerri J, Talon M, Tadeo F R. IDA (INFLORESCENCE DEFICIENT IN ABSCISSION)-like peptides and HAE (HAESA)-like receptors regulate Corolla abscission in Nicotiana benthamiana flowers. BMC Plant Biol, 2021, 21: 226. |
[230] | 李金红. 番茄花柄脱落相关基因LelDL和LeHAESA克隆功能验证及LeMKKs和LeMPKs的钙素调控. 沈阳农业大学博士学位论文, 辽宁沈阳, 2012. |
Li J H. Functional Verification of Tomato Stem Abscission-related Genes LelDL and LeHAESA and Calcium Regulation of LeMKKs and LeMPKs. PhD Dissertation of Shenyang Agricultural University, Shenyang, Liaoning, China, 2012 (in Chinese with English abstract). | |
[231] | Williford J R. Influence of harvest factors on cotton yield and quality. Trans ASAE, 1992, 35: 1103-1107. |
[232] | Sawan Z, Sakr R, El-Kady M. Effect of ethrel treatment on the yield components and fiber properties of the Egyptian cotton. Zeitschrift fur Acker-und Pflanzenbau, 1984, 153: 72-78. |
[233] | Scott W P. Evaluation of aldicarb and ethephon in cotton production. In:Proceedings of the Beltwide Cotton Producers Conference. National Cotton Council, Memphis, TN, 1990. pp 280. |
[234] | Dunster K W, Dunlap R L, Gonzales F J. Influence of ETHREL plant regulator on boll opening and defoliation of western cotton. In Proceedings of the Plant Growth Regulator Working Group, Longmont, CO, USA, 1980. pp5-21. |
[235] | Guinn G. Abscission of cotton floral buds and bolls as influenced by factors affecting photosynthesis and Respiration1. Crop Sci, 1974, 14: 291-293. |
[236] | 孙子淇, 李慧慧, 张鲁燕, 王健康. QTL作图中零假设检验统计量分布特征及LOD临界值估计方法. 作物学报, 2013, 39: 1-11. |
Sun Z Q, Li H H, Zhang L Y, Wang J K. Properties of the test statistic under null hypothesis and the calculation of LOD threshold in quantitative trait loci (QTL) mapping. Acta Agron Sin, 2013, 39: 1-11 (in Chinese with English abstract). | |
[237] | 邱丽娟, 郭勇, 黎裕, 王晓波, 周国安, 刘章雄, 周时荣, 李新海, 马有志, 王建康, 万建民. 中国作物新基因发掘: 现状、挑战与展望. 作物学报, 2011, 37: 1-17. |
Qiu L J, Guo Y, Li Y, Wang X B, Zhou G A, Liu Z X, Zhou S R, Li X H, Ma Y Z, Wang J K, Wan J M. Novel gene discovery of crops in China: status, challenging, and perspective. Acta Agron Sin, 2011, 37: 1-17 (in Chinese with English abstract). |
[1] | 辛明华, 秘雅迪, 王国平, 李小飞, 李亚兵, 董合林, 韩迎春, 冯璐. 行距配置和种植密度对棉花干物质生产及产量的影响[J]. 作物学报, 2025, 51(1): 221-232. |
[2] | 李超, 付小琼. 基于GYT双标图综合评价黄河流域中熟杂交棉花区域试验品种[J]. 作物学报, 2025, 51(1): 30-43. |
[3] | 艾莎, 李莎, 方治伟, 李论, 李甜甜, 高利芬, 陈利红, 肖华锋, 万人静, 闫多子, 武星廷, 彭海, 韩瑞玺, 周俊飞. 棉花MNP标记位点开发及其在DNA指纹图谱构建中的应用[J]. 作物学报, 2024, 50(9): 2267-2278. |
[4] | 李航, 刘丽, 黄乾, 刘文豪, 司爱君, 孔宪辉, 王旭文, 赵福相, 梅拥军, 余渝. 棉花种质资源萌发期耐盐性鉴定及筛选[J]. 作物学报, 2024, 50(5): 1147-1157. |
[5] | 乐愉, 王涛, 张献龙, 林忠旭. 陆地棉重组自交系再生能力和遗传转化效率筛选[J]. 作物学报, 2024, 50(5): 1172-1180. |
[6] | 刘成敏, 门雅琦, 秦都林, 闫晓宇, 张乐, 孟浩, 苏寻雅, 孙学振, 宋宪亮, 毛丽丽. 长期秸秆还田下施氮量对棉花产量和氮素利用的影响[J]. 作物学报, 2024, 50(4): 1043-1052. |
[7] | 张慧, 张欣雨, 袁旭, 陈伟达, 杨婷. 烟草叶片响应镉胁迫的差异表达基因鉴定及分析[J]. 作物学报, 2024, 50(4): 944-956. |
[8] | 柯会锋, 苏红梅, 孙正文, 谷淇深, 杨君, 王国宁, 徐东永, 王洪这, 吴立强, 张艳, 张桂寅, 马峙英, 王省芬. 棉花现代品种资源产量与纤维品质性状鉴定及分子标记评价[J]. 作物学报, 2024, 50(2): 280-293. |
[9] | 李志坤, 贾文华, 朱伟, 刘伟, 马宗斌. 氮肥和缩节胺对棉花纤维产量及品质时间分布的影响[J]. 作物学报, 2024, 50(2): 514-528. |
[10] | 张馨月, 秦阳, 李瑞, 黄全生, 王逸茹, 郑军. 玉米穗发芽突变体vp2的基因克隆及功能研究[J]. 作物学报, 2024, 50(11): 2712-2719. |
[11] | 尚红燕, 普静, 柯会锋, 谷淇深, 孙正文, 杨君, 王国宁, 张艳, 卢怀玉, 徐东永, 吴立强, 马峙英, 王省芬, 吴金华. 不同种植环境下国内外棉花种质资源的遗传多样性分析与评价[J]. 作物学报, 2024, 50(10): 2528-2537. |
[12] | 肖胜华, 董贤镘, 彭鑫, 李安子, 闭兆福, 廖铭静, 黄礼豪, 管倩倩, 胡琴, 朱龙付. 转录因子GhWRKY41促进水杨酸合成增强棉花对黄萎病菌的抗性[J]. 作物学报, 2024, 50(10): 2447-2457. |
[13] | 郭家鑫, 叶扬, 郭慧娟, 闵伟. 盐碱胁迫对棉花叶片蛋白质组的影响及差异性分析[J]. 作物学报, 2024, 50(1): 219-236. |
[14] | 肖胜华, 陆妍, 李安子, 覃耀斌, 廖铭静, 闭兆福, 卓柑锋, 朱永红, 朱龙付. 棉花AP2/ERF转录因子GhTINY2负调控植株抗盐性的功能分析[J]. 作物学报, 2024, 50(1): 126-137. |
[15] | 宋松泉, 唐翠芳, 雷华平, 姜孝成, 王伟青, 程红焱. 种子休眠与萌发调控的研究进展[J]. 作物学报, 2024, 50(1): 1-15. |
|