作物学报 ›› 2025, Vol. 51 ›› Issue (6): 1569-1581.doi: 10.3724/SP.J.1006.2025.43056
袁鑫1(), 赵卓凡2, 赵瑞清1, 刘孝伟1, 郑名敏3, 刘育生4, 董好胜4, 邓丽娟4, 曹墨菊1,*(
), 黄强4,*(
)
YUAN Xin1(), ZHAO Zhuo-Fan2, ZHAO Rui-Qing1, LIU Xiao-Wei1, ZHENG Ming-Min3, LIU Yu-Sheng4, DONG Hao-Sheng4, DENG Li-Juan4, CAO Mo-Ju1,*(
), HUANG Qiang4,*(
)
摘要:
籽粒是玉米最重要的库器官, 其正常发育需要充足的碳水化合物供应与顺畅的物质运输通道。本研究在选系中获得了1份籽粒发育缺陷突变体small kernel 18 (smk18), 经多年多点种植, 突变体smk18性状遗传稳定, 统计(B73×smk18) F2群体分离比发现, 该性状受1对隐性单基因控制。将smk18突变性状回交5代于自交系RP125中构建近等基因系mn-like1 (RP125smk18 smk18)。表型鉴定显示, mn-like1植株相较于RP125株高、穗位高增加, 百粒重、粒长、粒宽显著降低。通过分子标记将该突变基因定位于2号染色体分子标记Indel 4和Indel 5之间。该区间内有一报道的小籽粒基因Miniature1 (Mn1), 其编码细胞壁蔗糖转化酶, 在籽粒发育早期控制糖类物质运输。通过扩增mn-like1中Mn1基因CDS, 测序并比对发现突变体第5外显子上有9 bp缺失, 使得Mn1蛋白第409~411的3个氨基酸缺失, 蛋白结构变异。且授粉后13天mn-like1籽粒中Mn1表达量显著降低。通过将mn-like1与Mn1转座子插入突变体mn1-mu进行等位性测验, 确认mn-like1为Mn1新的等位突变体。亚细胞定位、糖类物质测量以及糖原染色结果显示, Mn1在籽粒胚乳基底转移层特异表达, 其突变后糖类物质运输通道受阻, mn-like1中蔗糖和淀粉含量显著降低, 造成籽粒发育缺陷。本研究丰富了不同遗传背景下Mn1突变体的种质资源, 为Mn1调控籽粒发育机制的解析和Mn1蛋白催化功能研究提供新的遗传材料。
[1] | Dai D W, Ma Z Y, Song R T.Maize kernel development. Mol Breed, 2021, 41: 2. |
[2] |
Doll N M, Depège-Fargeix N, Rogowsky P M, Widiez T. Signaling in early maize kernel development. Mol Plant, 2017, 10: 375-388.
doi: S1674-2052(17)30009-6 pmid: 28267956 |
[3] | 刘京, 朱凯丽, 岳海旺, 李贺勤, 张海艳, 赵延明, 杨然兵, 尚书旗, 江绪文. 玉米果种皮对其种子萌发及生理特性的影响. 种子, 2021, 40(9): 40-47. |
Liu J, Zhu K L, Yue H W, Li H Q, Zhang H Y, Zhao Y M, Yang R B, Shang S Q, Jiang X W. Effects of seed coat on seed germination and physiological characteristics of maize. Seed, 2021, 40(9): 40-47 (in Chinese with English abstract). | |
[4] | Wallace J G. Maize seed endophytes. Mol Plant Pathol, 2023, 24: 801-810. |
[5] | 孙琴.ZmEXPB15调控玉米籽粒粒型的生物学功能及分子机理. 华中农业大学博士学位论文, 湖北武汉, 2022. |
Sun Q.Biological Function and Molecular Mechanism of ZmEXPB15 Regulating Maize Grain Type. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2022 (in Chinese with English abstract). | |
[6] |
Dai D W, Ma Z Y, Song R T.Maize endosperm development. J Integr Plant Biol, 2021, 63: 613-627.
doi: 10.1111/jipb.13069 |
[7] | 徐阿慧.玉米角质和粉质胚乳淀粉的发育和特性. 扬州大学硕士学位论文, 江苏扬州, 2020. |
Xu A H. Development and Properties of Starches from Vitreous and Floury Endosperms of Maize Kernels. MS Thesis of Yangzhou University, Yangzhou, Jiangsu, China, 2020 (in Chinese with English abstract). | |
[8] |
Chatterjee D, Wittmeyer K, Lee T F, Cui J, Yennawar N H, Yennawar H P, Meyers B C, Chopra S. Maize unstable factor for orange1 is essential for endosperm development and carbohydrate accumulation. Plant Physiol, 2021, 186: 1932-1950.
doi: 10.1093/plphys/kiab183 pmid: 33905500 |
[9] | Zheng Y K. Molecular mechanisms of maize endosperm transfer cell development. Plant Cell Rep, 2022, 41: 1171-1180. |
[10] | Wang Y Y, Shi D S, Zhu H, Yin H X, Wang G Y, Yang A Q, Song Z X, Jing Q Q, Shuai B L, Xu N K, et al. Revisiting maize Brittle endosperm-2 reveals new insights in BETL development and starchy endosperm filling. Plant Sci, 2023, 332: 111727. |
[11] |
Neuffer M G, Sheridan W F.Defective kernel mutants of maize. I. Genetic and lethality studies. Genetics, 1980, 95: 929-944.
doi: 10.1093/genetics/95.4.929 pmid: 17249053 |
[12] |
蒋成功, 石慧敏, 王红武, 李坤, 黄长玲, 刘志芳, 吴宇锦, 李树强, 胡小娇, 马庆. 玉米籽粒突变体smk7的表型分析和基因定位. 作物学报, 2021, 47: 285-293.
doi: 10.3724/SP.J.1006.2021.03015 |
Jiang C G, Shi H M, Wang H W, Li K, Huang C L, Liu Z F, Wu Y J, Li S Q, Hu X J, Ma Q. Phenotype analysis and gene mapping of small kernel 7 (smk7) mutant in maize. Acta Agron Sin, 2021, 47: 285-293 (in Chinese with English abstract). | |
[13] | Ding S, Liu X Y, Wang H C, Wang Y, Tang J J, Yang Y Z, Tan B C. SMK6 mediates the C-to-U editing at multiple sites in maize mitochondria. J Plant Physiol, 2019, 240: 152992. |
[14] | Yuan N N, Wang J C, Zhou Y, An D, Xiao Q, Wang W Q, Wu Y R. EMB-7L is required for embryogenesis and plant development in maize involved in RNA splicing of multiple chloroplast genes. Plant Sci, 2019, 287: 110203. |
[15] |
Miclaus M, Wu Y R, Xu J H, Dooner H K, Messing J. The maize high-lysine mutant opaque7 is defective in an acyl-CoA synthetase-like protein. Genetics, 2011, 189: 1271-1280.
doi: 10.1534/genetics.111.133918 pmid: 21926304 |
[16] | Long Y, Wang C, Liu C, Li H G, Pu A Q, Dong Z Y, Wei X, Wan X Y. Molecular mechanisms controlling grain size and weight and their biotechnological breeding applications in maize and other cereal crops. J Adv Res, 2024, 62: 27-46. |
[17] | Li X J, Zhang Y F, Hou M M, Sun F, Shen Y, Xiu Z H, Wang X M, Chen Z L, Sun S S M, Small I, et al. Small kernel 1 encodes a pentatricopeptide repeat protein required for mitochondrial nad7 transcript editing and seed development in maize (Zea mays) and rice (Oryza sativa). Plant J, 2014, 79: 797-809. |
[18] |
Zhang S S, Zhan J P, Yadegari R. Maize opaque mutants are no longer so opaque. Plant Reprod, 2018, 31: 319-326.
doi: 10.1007/s00497-018-0344-3 pmid: 29978299 |
[19] | Wang P, Clark N M, Nolan T M, Song G Y, Bartz P M, Liao C Y, Montes-Serey C, Katz E, Polko J K, Kieber J J, et al. Integrated omics reveal novel functions and underlying mechanisms of the receptor kinase FERONIA in Arabidopsis thaliana. Plant Cell, 2022, 34: 2594-2614. |
[20] | Boehlein S K, Shaw J R, Boehlein T J, Boehlein E C, Curtis Hannah L. Fundamental differences in starch synthesis in the maize leaf, embryo, ovary and endosperm. Plant J, 2018, 96: 595-606. |
[21] |
Wu J W, Wang X Y, Yan R Y, Zheng G M, Zhang L, Wang Y, Zhao Y J, Wang B H, Pu M L, Zhang X S, et al. A MYB-related transcription factor ZmMYBR29 is involved in grain filling. BMC Plant Biol, 2024, 24: 458.
doi: 10.1186/s12870-024-05163-9 pmid: 38797860 |
[22] |
Ma B, Zhang L, He Z H. Understanding the regulation of cereal grain filling: The way forward. J Integr Plant Biol, 2023, 65: 526-547.
doi: 10.1111/jipb.13456 |
[23] |
Chourey P S, Li Q B, Kumar D. Sugar-hormone cross-talk in seed development: two redundant pathways of IAA biosynthesis are regulated differentially in the invertase-deficient miniature1 (Mn1) seed mutant in maize. Mol Plant, 2010, 3: 1026-1036.
doi: 10.1093/mp/ssq057 pmid: 20924026 |
[24] |
Hu M J, Zhao H M, Yang B, Yang S, Liu H H, Tian H, Shui G H, Chen Z L, Lizhu E, Lai J S, et al. ZmCTLP1 is required for the maintenance of lipid homeostasis and the basal endosperm transfer layer in maize kernels. New Phytol, 2021, 232: 2384-2399.
doi: 10.1111/nph.17754 pmid: 34559890 |
[25] | Sun C H, Wang Y, Yang X R, Tang L, Wan C M, Liu J Q, Chen C P, Zhang H S, He C C, Liu C Q, et al. MATE transporter GFD1 cooperates with sugar transporters, mediates carbohydrate partitioning and controls grain-filling duration, grain size and number in rice. Plant Biotechnol J, 2023, 21: 621-634. |
[26] | Miller M E, Chourey P S. The maize invertase-deficient miniature-1 seed mutation is associated with aberrant pedicel and endosperm development. Plant Cell, 1992, 4: 297-305. |
[27] | Cheng W H, Taliercio E W, Chourey P S. The Miniature1 seed locus of maize encodes a cell wall invertase required for normal development of endosperm and maternal cells in the pedicel. Plant Cell, 1996, 8: 971-983. |
[28] |
Li B, Liu H, Zhang Y, Kang T, Zhang L, Tong J H, Xiao L T, Zhang H X. Constitutive expression of cell wall invertase genes increases grain yield and starch content in maize. Plant Biotechnol J, 2013, 11: 1080-1091.
doi: 10.1111/pbi.12102 pmid: 23926950 |
[29] |
Lowe J, Nelson O E. Miniature seed-a study in the development of a defective caryopsis in maize. Genetics, 1946, 31: 525-533.
doi: 10.1093/genetics/31.5.525 pmid: 17247216 |
[30] |
Vilhar B, Kladnik A, Blejec A, Chourey P S, Dermastia M. Cytometrical evidence that the loss of seed weight in the miniature1 seed mutant of maize is associated with reduced mitotic activity in the developing endosperm. Plant Physiol, 2002, 129: 23-30.
doi: 10.1104/pp.001826 pmid: 12011334 |
[31] | Kang B H, Xiong Y Q, Williams D S, Pozueta-Romero D, Chourey P S. Miniature1-encoded cell wall invertase is essential for assembly and function of wall-in-growth in the maize endosperm transfer cell. Plant Physiol, 2009, 151: 1366-1376. |
[32] |
Lei B, Shao J L, Zhang F, Wang J, Xiao Y H, Cheng Z J, Tang W B, Wan J M. Genetic analysis and fine mapping of a grain size QTL in the small-grain sterile rice line Zhuo201S. J Integr Agric, 2024, 23: 2155-2163.
doi: 10.1016/j.jia.2023.07.026 |
[33] | 高友军, 刘文婷, 陶勇生, 郑用琏. 玉米Mu转座因子及其应用. 作物学报, 2006, 32: 1236-1243. |
Gao Y J, Liu W T, Tao Y S, Zheng Y L. The mutator transposable element of maize and its utilization. Acta Agron Sin, 2006, 32: 1236-1243 (in Chinese with English abstract). | |
[34] |
丁孟丽, 王茹茵, 施栋晟, 李莹博, 雷洁, 陈洪宇, 申清文, 王桂凤. 玉米小籽粒突变体mn-Mu的基因克隆与转录组分析. 作物学报, 2023, 49: 3122-3130.
doi: 10.3724/SP.J.1006.2023.23076 |
Ding M L, Wang R Y, Shi D S, Li Y B, Lei J, Chen H Y, Shen Q W, Wang G F.Map-based cloning and transcriptomic analysis of a maize miniature kernel mutant mn-Mu. Acta Agron Sin, 2023, 49: 3122-3130 (in Chinese with English abstract). | |
[35] |
王娟, 徐相波, 张茂林, 刘铁山, 徐倩, 董瑞, 刘春晓, 关海英, 刘强, 汪黎明, 等. 一个新的玉米Miniature1基因等位突变体的鉴定与遗传分析. 作物学报, 2023, 49: 2088-2096.
doi: 10.3724/SP.J.1006.2023.23059 |
Wang J, Xu X B, Zhang M L, Liu T S, Xu Q, Dong R, Liu C X, Guan H Y, Liu Q, Wang L M, et al. Characterization and genetic analysis of a new allelic mutant of Miniature1gene in maize. Acta Agron Sin, 2023, 49: 2088-2096 (in Chinese with English abstract). | |
[36] |
陆璐, 陶雅军, 罗学娅, 马君燕. 糖苷水解酶32家族结构与功能的研究进展. 中国酿造, 2019, 38(8): 14-19.
doi: 10.11882/j.issn.0254-5071.2019.08.004 |
Lu L, Tao Y J, Luo X Y, Ma J Y. Research progress on the structure and function of glycoside hydrolase 32 family. China Brew, 2019, 38(8): 14-19 (in Chinese with English abstract). | |
[37] |
Angela Sainz-Polo M, Ramírez-Escudero M, Lafraya A, González B, Marín-Navarro J, Polaina J, Sanz-Aparicio J. Three-dimensional structure of Saccharomyces invertase: role of a non-catalytic domain in oligomerization and substrate specificity. J Biol Chem, 2013, 288: 9755-9766.
doi: 10.1074/jbc.M112.446435 pmid: 23430743 |
[38] |
Álvaro-Benito M, Sainz-Polo M A, González-Pérez D, González B, Plou F J, Fernández-Lobato M, Sanz-Aparicio J. Structural and kinetic insights reveal that the amino acid pair Gln-228/Asn-254 modulates the transfructosylating specificity of Schwanniomyces occidentalis β-fructofuranosidase, an enzyme that produces prebiotics. J Biol Chem, 2012, 287: 19674-19686.
doi: 10.1074/jbc.M112.355503 pmid: 22511773 |
[39] | Yang B, Wang J, Yu M, Zhang M L, Zhong Y T, Wang T Y, Liu P, Song W B, Zhao H M, Fastner A, et al. The sugar transporter ZmSUGCAR1 of the nitrate transporter 1/peptide transporter family is critical for maize grain filling. Plant Cell, 2022, 34: 4232-4254. |
[40] | Shen S, Ma S, Chen X M, Yi F, Li B B, Liang X G, Liao S J, Gao L H, Zhou S L, Ruan Y L. A transcriptional landscape underlying sugar import for grain set in maize. Plant J, 2022, 110: 228-242. |
[41] | Yi F, Gu W, Li J F, Chen J, Hu L, Cui Y, Zhao H M, Guo Y, Lai J S, Song W B. Miniature Seed6, encoding an endoplasmic reticulum signal peptidase, is critical in seed development. Plant Physiol, 2021, 185: 985-1001. |
[1] | 李世鹏, 陈才武, 张晶, 吕恬, 傅廷栋, 易斌. 基于改进U-Net++模型的油菜pol TCMS温敏两系育性等级鉴定及温度育性关系的量化研究[J]. 作物学报, 2025, 51(6): 1423-1434. |
[2] | 闫尚龙, 王琦明, 柴强, 殷文, 樊志龙, 胡发龙, 刘志鹏, 韦金贵. 绿洲灌区玉米籽粒产量及品质对密植及间作豌豆的响应[J]. 作物学报, 2025, 51(6): 1665-1675. |
[3] | 杨思杰, 杜启迪, 柴守玺, 熊宏春, 谢永盾, 赵林姝, 古佳玉, 郭会君, 刘录祥. 小麦小旗叶突变性状基因定位与遗传分析[J]. 作物学报, 2025, 51(6): 1548-1557. |
[4] | 杨晓慧, 晏宣军, 杨文妍, 付俊杰, 杨琴, 谢玉心. 玉米ZmKL1优异等位基因调控籽粒大小的效应评估及分子机制解析[J]. 作物学报, 2025, 51(6): 1501-1513. |
[5] | 张世博, 李宏岩, 李培富, 任瑞华, 路海东. 自然条件下气温升高3℃至4℃对地膜玉米根-冠衰老和产量的影响[J]. 作物学报, 2025, 51(6): 1599-1617. |
[6] | 郑浩飞, 杨楠, 杜健, 贾改秀, 邹悦, 麻文浩, 王彦婷, 索东让, 赵建华, 孙宁科, 张建文. 西北灌漠土区长期有机无机配施协同提升玉米产量和品质[J]. 作物学报, 2025, 51(6): 1618-1628. |
[7] | 蒋雨洲, 王甲, 张宏媛, 冯文豪, 王鹏, 李玉义. 化肥配施有机物料对玉米田土壤细菌和真菌群落结构的影响[J]. 作物学报, 2025, 51(5): 1378-1388. |
[8] | 周科, 陈鹏飞. 耦合多源无人机遥感数据和机器学习方法的玉米SPAD估测[J]. 作物学报, 2025, 51(5): 1389-1399. |
[9] | 盛倩男, 方娅婷, 赵剑, 杜思垚, 胡行珍, 余秋华, 朱俊, 任涛, 鲁剑巍. 不同养分管理措施对稻田和旱地油菜产量的影响及其对冻害的响应[J]. 作物学报, 2025, 51(5): 1286-1298. |
[10] | 孟凡琦, 房孟颖, 罗艺, 卢霖, 董学瑞, 王亚菲, 郭丽娜, 闫鹏, 董志强, 张凤路. 乙烯利-甜菜碱-水杨酸合剂对夏玉米耐热性和产量的调控效应[J]. 作物学报, 2025, 51(5): 1299-1311. |
[11] | 李雪婷, 任昊, 王洪章, 张吉旺, 赵斌, 任佰朝, 刘莹, 姚海燕, 刘鹏. 盐胁迫对不同耐盐型玉米品种叶片光合性能和干物质积累与分配的影响[J]. 作物学报, 2025, 51(4): 1091-1101. |
[12] | 宋利, 刘广周, 张华, 卢庭启, 卿春燕, 杨云山, 郭晓霞, 胡单, 李少昆, 侯鹏. 密植滴灌水肥一体化对西南夏玉米产量及土壤细菌群落的影响[J]. 作物学报, 2025, 51(4): 992-1004. |
[13] | 王岩, 白春生, 李波, 范虹, 何蔚, 杨莉莉, 曹悦, 赵财. 覆膜免耕和灌水量对西北绿洲灌区玉米产量及光合特性的影响[J]. 作物学报, 2025, 51(3): 755-770. |
[14] | 李翔宇, 季欣杰, 王雪莲, 龙安燃, 王峥宇, 杨子慧, 宫香伟, 姜英, 齐华. 秸秆还田配施氮肥对春玉米产量和籽粒品质的影响[J]. 作物学报, 2025, 51(3): 696-712. |
[15] | 辛雨宁, 任昊, 王洪章, 梁明磊, 于涛, 刘鹏. 喷施6-苄氨基腺嘌呤(6-BA)对授粉后高温胁迫下夏玉米籽粒灌浆及产量的影响[J]. 作物学报, 2025, 51(2): 418-431. |
|