作物学报 ›› 2025, Vol. 51 ›› Issue (7): 1736-1746.doi: 10.3724/SP.J.1006.2025.44141
尹雨萌1**(), 王雁楠1**(
), 康志河1, 乔守晨1, 卞倩倩1, 李亚蔚1, 曹郭郑1, 赵国瑞1, 徐丹丹2, 杨育峰1,*(
)
YIN Yu-Meng1**(), WANG Yan-Nan1**(
), KANG Zhi-He1, QIAO Shou-Chen1, BIAN Qian-Qian1, LI Ya-Wei1, CAO Guo-Zheng1, ZHAO Guo-Rui1, XU Dan-Dan2, YANG Yu-Feng1,*(
)
摘要:
本研究通过分析前期的薯皮色变异转录组数据, 克隆得到IbGSTU7基因, 该基因开放阅读框(ORF)全长660 bp, 编码219个氨基酸。蛋白序列分析表明, IbGSTU7为酸性、亲水性、稳定性蛋白, 且与甘薯近缘野生种Ipomoea triloba的亲缘关系最近, 定位于细胞质中。通过实时荧光定量PCR (qRT-PCR)对IbGSTU7基因的表达特征进行分析发现, IbGSTU7在甘薯主要组织中均有表达, 且在薯皮中的表达量最高。此外, 干旱、盐胁迫以及外源脱落酸(ABA)均可诱导IbGSTU7基因上调表达。通过农杆菌转化法对IbGSTU7在甘薯中进行过表达发现, 过表达植株的薯皮花青苷含量以及花青苷合成途径相关基因IbPAL与IbUFGT的表达量均显著提高。同时, PEG模拟干旱胁迫下过表达植株表现出更强的抗旱性, 鲜重和根长显著高于野生型对照, 过氧化氢(H2O2)含量显著降低, 活性氧(ROS)清除相关基因IbMDHAR和IbPOD显著上调表达。本研究为进一步探索IbGSTU7基因在甘薯花青苷积累和干旱胁迫应答中的功能提供了新的理论支撑。
[1] |
王雁楠, 陈金金, 卞倩倩, 胡琳琳, 张莉, 尹雨萌, 乔守晨, 曹郭郑, 康志河, 赵国瑞, 等. 转录组与代谢组联合分析揭示遮阴胁迫下甘薯的代谢响应途径. 作物学报, 2023, 49: 1785-1798.
doi: 10.3724/SP.J.1006.2023.24137 |
Wang Y N, Chen J J, Bian Q Q, Hu L L, Zhang L, Yin Y M, Qiao S C, Cao G Z, Kang Z H, Zhao G R, et al. Integrated analysis of transcriptome and metabolome reveals the metabolic response pathways of sweetpotato under shade stress. Acta Agron Sin, 2023, 49: 1785-1798 (in Chinese with English abstract). | |
[2] |
王欣, 李强, 曹清河, 马代夫. 中国甘薯产业和种业发展现状与未来展望. 中国农业科学, 2021, 54: 483-492.
doi: 10.3864/j.issn.0578-1752.2021.03.003 |
Wang X, Li Q, Cao Q H, Ma D F. Current status and future prospective of sweetpotato production and seed industry in China. Sci Agric Sin, 2021, 54: 483-492 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2021.03.003 |
|
[3] | Yan H, Ma M, Ahmad M Q, Arisha M H, Tang W, Li C, Zhang Y G, Kou M, Wang X, Gao R F, et al. High-density single nucleotide polymorphisms genetic map construction and quantitative trait locus mapping of color-related traits of purple sweet potato [Ipomoea batatas (L.) Lam.]. Front Plant Sci, 2022, 12: 797041. |
[4] | Drapal M, Rossel G, Heider B, Fraser P D. Metabolic diversity in sweet potato (Ipomoea batatas, Lam.) leaves and storage roots. Hortic Res, 2019, 6: 2. |
[5] | Khoo H E, Azlan A, Tang S T, Lim S M. Anthocyanidins and anthocyanins: colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr Res, 2017, 61: 1361779. |
[6] | Holton T A, Cornish E C. Genetics and biochemistry of anthocyanin biosynthesis. Plant Cell, 1995, 7: 1071-1083. |
[7] |
Sunil L, Shetty N P. Biosynthesis and regulation of anthocyanin pathway genes. Appl Microbiol Biotechnol, 2022, 106: 1783-1798.
doi: 10.1007/s00253-022-11835-z pmid: 35171341 |
[8] | Honda C, Kotoda N, Wada M, Kondo S, Kobayashi S, Soejima J, Zhang Z L, Tsuda T, Moriguchi T. Anthocyanin biosynthetic genes are coordinately expressed during red coloration in apple skin. Plant Physiol Biochem, 2002, 40: 955-962. |
[9] |
Petroni K, Tonelli C. Recent advances on the regulation of anthocyanin synthesis in reproductive organs. Plant Sci, 2011, 181: 219-229.
doi: 10.1016/j.plantsci.2011.05.009 pmid: 21763532 |
[10] | 刘泽.花青素还原酶调控绿豆芽下胚轴花青苷积累的机理. 南京农业大学硕士学位论文, 江苏南京, 2022. |
Liu Z. Mechanism of Anthocyanin Reductase Regulation of Anthocyanin Accumulation in Mung Bean Hypocotyl. MS Thesis of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2022 (in Chinese with English abstract). | |
[11] | Goodman C D, Casati P, Walbot V. A multidrug resistance-associated protein involved in anthocyanin transport in Zea mays. Plant Cell, 2004, 16: 1812-1826. |
[12] |
Zhao J. Flavonoid transport mechanisms: how to go, and with whom. Trends Plant Sci, 2015, 20: 576-585.
doi: 10.1016/j.tplants.2015.06.007 pmid: 26205169 |
[13] | Marrs K A, Alfenito M R, Lloyd A M, Walbot V. A glutathione S-transferase involved in vacuolar transfer encoded by the maize gene Bronze-2. Nature, 1995, 375: 397-400. |
[14] |
Alfenito M R, Souer E, Goodman C D, Buell R, Mol J, Koes R, Walbot V. Functional complementation of anthocyanin sequestration in the vacuole by widely divergent glutathione S-transferases. Plant Cell, 1998, 10: 1135-1149.
doi: 10.1105/tpc.10.7.1135 pmid: 9668133 |
[15] |
Kitamura S, Shikazono N, Tanaka A. TRANSPARENT TESTA 19 is involved in the accumulation of both anthocyanins and proanthocyanidins in Arabidopsis. Plant J, 2004, 37: 104-114.
doi: 10.1046/j.1365-313x.2003.01943.x pmid: 14675436 |
[16] | Conn S, Curtin C, Bézier A, Franco C, Zhang W. Purification, molecular cloning, and characterization of glutathione S-transferases (GSTs) from pigmented Vitis vinifera L. cell suspension cultures as putative anthocyanin transport proteins. J Exp Bot, 2008, 59: 3621-3634. |
[17] | Hu B, Zhao J T, Lai B, Qin Y H, Wang H C, Hu G B. LcGST4 is an anthocyanin-related glutathione S-transferase gene in Litchi chinensis Sonn. Plant Cell Rep, 2016, 35: 831-843. |
[18] | 刘禹姗, 陈丽, 邓宇, 蔡莉, 李亚东, 孙海悦. 越橘谷胱甘肽巯基转移酶基因的克隆及表达. 吉林农业大学学报, 2017, 39: 423-431. |
Liu Y S, Chen L, Deng Y, Cai L, Li Y D, Sun H Y. Cloning and expression analysis of glutathione S-transferase gene in blueberry. J Jilin Agric Univ, 2017, 39: 423-431 (in Chinese with English abstract). | |
[19] | Zhang Y Y, Zhang Z N, Guo S J, Qu P Y, Liu J P, Cheng C Z. Characterization of blueberry glutathione S-transferase (GST) genes and functional analysis of VcGSTF8 reveal the role of ‘MYB/bHLH-GSTF’ module in anthocyanin accumulation. Ind Crops Prod, 2024, 218: 119006. |
[20] | Qiu L K, Chen K, Pan J, Ma Z Y, Zhang J J, Wang J, Cheng T R, Zheng T C, Pan H T, Zhang Q X. Genome-wide analysis of glutathione S-transferase genes in four Prunus species and the function of PmGSTF2, activated by PmMYBa1, in regulating anthocyanin accumulation in Int J Biol Macromol. Int J Biol Macromol, 2024, 281: 136506. |
[21] | Jiang S H, Chen M, He N B, Chen X L, Wang N, Sun Q G, Zhang T L, Xu H F, Fang H C, Wang Y C, et al. MdGSTF6, activated by MdMYB1, plays an essential role in anthocyanin accumulation in apple. Hortic Res, 2019, 6: 40. |
[22] | Shao D N, Li Y J, Zhu Q H, Zhang X Y, Liu F, Xue F, Sun J. GhGSTF12, a glutathione S-transferase gene, is essential for anthocyanin accumulation in cotton (Gossypium hirsutum L.). Plant Sci, 2021, 305: 110827. |
[23] | Kou M, Liu Y J, Li Z Y, Zhang Y G, Tang W, Yan H, Wang X, Chen X G, Su Z X, Arisha M H, et al. A novel glutathione S-transferase gene from sweetpotato, IbGSTF4, is involved in anthocyanin sequestration. Plant Physiol Biochem, 2019, 135: 395-403. |
[24] | Gill S S, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem, 2010, 48: 909-930. |
[25] | Dong T T, Han R P, Yu J W, Zhu M K, Zhang Y, Gong Y, Li Z Y. Anthocyanins accumulation and molecular analysis of correlated genes by metabolome and transcriptome in green and purple asparaguses (Asparagus officinalis L.). Food Chem, 2019, 271: 18-28. |
[26] | Nakabayashi R, Mori T, Saito K. Alternation of flavonoid accumulation under drought stress in Arabidopsis thaliana. Plant Signal Behav, 2014, 9: e29518. |
[27] | Xu Z H, Mahmood K, Rothstein S J. ROS induces anthocyanin production via late biosynthetic genes and anthocyanin deficiency confers the hypersensitivity to ROS-generating stresses in Arabidopsis. Plant Cell Physiol, 2017, 58: 1364-1377. |
[28] | Wang J, Li D L, Peng Y X, Cai M H, Liang Z, Yuan Z P, Du X M, Wang J H, Schnable P S, Gu R L, et al. The anthocyanin accumulation related ZmBZ1, facilitates seedling salinity stress tolerance via ROS scavenging. Int J Mol Sci, 2022, 23: 16123. |
[29] | Hu Y F, Zhao H Y, Xue L Y, Nie N, Zhang H, Zhao N, He S Z, Liu Q C, Gao S P, Zhai H. IbMYC2 contributes to salt and drought stress tolerance via modulating anthocyanin accumulation and ROS- scavenging system in sweet potato. Int J Mol Sci, 2024, 25: 2096. |
[30] | Yang Y F, Shi D Y, Wang Y N, Zhang L, Chen X G, Yang X P, Xiong H Z, Bhattarai G, Ravelombola W, Olaoye D, et al. Transcript profiling for regulation of sweet potato skin color in Sushu 8 and its mutant Zhengshu 20. Plant Physiol Biochem, 2020, 148: 1-9. |
[31] |
Strasser R, Bondili J S, Schoberer J, Svoboda B, Liebminger E, Glössl J, Altmann F, Steinkellner H, Mach L. Enzymatic properties and subcellular localization of Arabidopsis β-N- acetylhexosaminidases. Plant Physiol, 2007, 145: 5-16.
doi: 10.1104/pp.107.101162 pmid: 17644627 |
[32] | 张铅, 禹阳, 刘帅, 贾赵东, 马佩勇, 金昊秀, 郭尚洙, 边小峰. 一种高效的甘薯遗传转化方法. 江苏师范大学学报(自然科学版), 2023, 41(2): 18-23. |
Zhang Q, Yu Y, Liu S, Jia Z D, Ma P Y, Jin H X, Guo S Z, Bian X F. An efficient method for sweetpotato genetic transformation. J Jiangsu Norm Univ (Nat Sci Edn), 2023, 41(2): 18-23 (in Chinese with English abstract). | |
[33] | 任志彤. 过表达IbCbEFP和IbSnRK1基因甘薯植株的特性鉴定及分子机理分析. 中国农业大学博士学位论文,北京, 2018. |
Ren Z T.C Characteristic Identification and Molecular Mechanism of Sweetpotato (Ipomoea batatas (L.) Lam.) Plants Overexpressing IbCbEFP and IbSnRKl. PhD Dissertation of China Agricultural University, Beijing, China, 2018 (in Chinese with English abstract). | |
[34] | 王学奎, 黄见良. 植物生理生化实验原理与技术(第3版). 北京: 高等教育出版社, 2015. pp 131-133. |
Wang X K, Huang J L. Principles and Techniques of Plant Physiological Biochemical Experiment, 3rd edn. Beijing: Higher Education Press, 2015. pp 131-133 (in Chinese). | |
[35] | Wang H X, Yang J, Zhang M, Fan W J, Firon N, Pattanaik S, Yuan L, Zhang P. Altered phenylpropanoid metabolism in the maize lc-expressed sweet potato (Ipomoea batatas) affects storage root development. Sci Rep, 2016, 6: 18645. |
[36] | 张亚真, 张芬, 王丽鸳, 韦康, 成浩. 植物谷胱甘肽转移酶在类黄酮累积中的作用. 植物生理学报, 2015, 51: 1815-1820. |
Zhang Y Z, Zhang F, Wang L Y, Wei K, Cheng H. Plant glutathione S-transferases: roles in flavonoid accumulation. Plant Physiol J, 2015, 51: 1815-1820 (in Chinese with English abstract). | |
[37] |
Sylvestre-Gonon E, Law S R, Schwartz M, Robe K, Keech O, Didierjean C, Dubos C, Rouhier N, Hecker A. Functional, structural and biochemical features of plant serinyl-glutathione transferases. Front Plant Sci, 2019, 10: 608.
doi: 10.3389/fpls.2019.00608 pmid: 31191562 |
[38] | Zhao Y W, Wang C K, Huang X Y, Hu D G. Genome-wide analysis of the glutathione S-transferase (GST) genes and functional identification of MdGSTU12 reveals the involvement in the regulation of anthocyanin accumulation in apple. Genes, 2021, 12: 1733. |
[39] | 王璐, 戴思兰, 金雪花, 黄河, 洪艳. 植物花青素苷转运机制的研究进展. 生物工程学报, 2014, 30: 848-863. |
Wang L, Dai S L, Jin X H, Huang H, Hong Y. Advances in plant anthocyanin transport mechanism. Chin J Biotechnol, 2014, 30: 848-863 (in Chinese with English abstract). | |
[40] | Jiang H W, Liu M J, Chen I C, Huang C H, Chao L Y, Hsieh H L. A glutathione S-transferase regulated by light and hormones participates in the modulation of Arabidopsis seedling development. Plant Physiol, 2010, 154: 1646-1658. |
[41] | 谢开珍, 刘佳琪, 任磊, 张婷婷, 王爱民. 甘薯苯丙烷类代谢及其酶基因研究进展. 植物学研究, 2019, 8: 355-365. |
Xie K Z, Liu J Q, Ren L, Zhang T T, Wang A M. Advances in phenylaprapanoid metabolism and its enzyme genes in sweet potato. Bot Res, 2019, 8: 355-365 (in Chinese with English abstract). | |
[42] |
Nakabayashi R, Saito K. Integrated metabolomics for abiotic stress responses in plants. Curr Opin Plant Biol, 2015, 24: 10-16.
doi: 10.1016/j.pbi.2015.01.003 pmid: 25618839 |
[43] | Mittler R, Zandalinas S I, Fichman Y, Van Breusegem F. Reactive oxygen species signalling in plant stress responses. Nat Rev Mol Cell Biol, 2022, 23: 663-679. |
[44] |
Thirumalaikumar V P, Devkar V, Mehterov N, Ali S, Ozgur R, Turkan I, Mueller-Roeber B, Balazadeh S. NAC transcription factor JUNGBRUNNEN1 enhances drought tolerance in tomato. Plant Biotechnol J, 2018, 16: 354-366.
doi: 10.1111/pbi.12776 pmid: 28640975 |
[45] | Qi Q, Dong Y Y, Liang Y L, Li K Z, Xu H N, Sun X D. Overexpression of SlMDHAR in transgenic tobacco increased salt stress tolerance involving S-nitrosylation regulation. Plant Sci, 2020, 299: 110609. |
[46] | Aleem M, Riaz A, Raza Q, Aleem M, Aslam M, Kong K K, Atif R M, Kashif M, Bhat J A, Zhao T J. Genome-wide characterization and functional analysis of class III peroxidase gene family in soybean reveal regulatory roles of GsPOD40 in drought tolerance. Genomics, 2022, 114: 45-60. |
[1] | 金欣欣, 宋亚辉, 苏俏, 杨永庆, 李玉荣, 王瑾. 冀花系列高油酸花生抗旱性鉴定与综合评价[J]. 作物学报, 2025, 51(3): 797-811. |
[2] | 阳新月, 肖人滈, 张林茜, 唐铭均, 孙光燕, 杜康, 吕长文, 唐道彬, 王季春. 不同生育期涝渍对甘薯抗逆生理特性及产量形成的影响[J]. 作物学报, 2025, 51(3): 744-754. |
[3] | 霍如雪, 葛祥菡, 石嘉, 李雪蕊, 戴圣杰, 刘振宁, 李宗芸. 甘薯组氨酸激酶蛋白IbHK5响应干旱和盐胁迫的功能分析[J]. 作物学报, 2025, 51(3): 650-666. |
[4] | 王语新, 陈天羽, 翟红, 张欢, 高少培, 何绍贞, 赵宁, 刘庆昌. 甘薯激酶基因IbHT1的克隆及抗旱性功能鉴定[J]. 作物学报, 2025, 51(2): 301-311. |
[5] | 刘波, 池明, 曹梦琦, 唐达, 杨恒照, 张卫华, 薛聪. 过表达马铃薯StuPPO9基因对烟草抗旱能力的影响[J]. 作物学报, 2024, 50(9): 2237-2247. |
[6] | 孙一鸣, 田侠, 王少霞, 刘庆. 不同施磷水平对甘薯硒吸收、分配和转化的影响[J]. 作物学报, 2024, 50(6): 1608-1615. |
[7] | 杨春菊, 唐道彬, 张凯, 杜康, 黄红, 乔欢欢, 王季春, 吕长文. 氮钾减量配施对甘薯产量和品质的影响[J]. 作物学报, 2024, 50(5): 1341-1350. |
[8] | 朱晓亚, 张强强, 赵鹏, 刘明, 王静, 靳容, 于永超, 唐忠厚. 叶面喷施丹参碳点缓解甘薯低磷胁迫的转录组与代谢组学分析[J]. 作物学报, 2024, 50(2): 383-393. |
[9] | 武丽芬, 夏川, 张立超, 孔秀英, 陈景堂, 刘旭. TaEMF2调控小麦抽穗期的功能分析[J]. 作物学报, 2024, 50(12): 2940-2949. |
[10] | 蒋杨影, 唐铭均, 张林茜, 吕长文, 唐道彬, 王季春. 生长前期光照强度对甘薯叶片光合生理和结薯的影响[J]. 作物学报, 2024, 50(10): 2575-2585. |
[11] | 杨毅, 何志强, 林佳慧, 李洋, 陈飞, 吕长文, 唐道彬, 周全卢, 王季春. 椰糠施用量对土壤理化性状和甘薯产量的影响[J]. 作物学报, 2023, 49(9): 2517-2527. |
[12] | 苏一钧, 赵路宽, 唐芬, 戴习彬, 孙亚伟, 周志林, 刘亚菊, 曹清河. 378份甘薯引进种遗传多样性及群体结构分析[J]. 作物学报, 2023, 49(9): 2582-2593. |
[13] | 贾瑞雪, 陈伊航, 张荣, 唐朝臣, 王章英. 超高效液相色谱法同时测定甘薯中13种类胡萝卜素的含量[J]. 作物学报, 2023, 49(8): 2259-2274. |
[14] | 王雁楠, 陈金金, 卞倩倩, 胡琳琳, 张莉, 尹雨萌, 乔守晨, 曹郭郑, 康志河, 赵国瑞, 杨国红, 杨育峰. 转录组与代谢组联合分析揭示遮阴胁迫下甘薯的代谢响应途径[J]. 作物学报, 2023, 49(7): 1785-1798. |
[15] | 朱旭东, 杨兰锋, 陈媛媛, 侯泽豪, 罗旖柔, 熊泽浩, 方正武. 甜荞FeSGT1基因克隆及抗旱功能解析[J]. 作物学报, 2023, 49(6): 1573-1583. |
|