作物学报 ›› 2025, Vol. 51 ›› Issue (7): 1769-1783.doi: 10.3724/SP.J.1006.2025.44170
闫知兰1,赵芹1,常甜达1,王一鸣1,王碧辉1,王鹏1,黄春国1,张会2,王利祥1,郝晓鹏3,* ,赵波1,*
YAN Zhi-Lan1,ZHAO Qin1,CHANG Tian-Da1,WANG Yi-Ming1,WANG Bi-Hui1,WANG Peng1,HUANG Chun-Guo1,ZHANG Hui2,WANG Li-Xiang1,HAO Xiao-Peng3,*,ZHAO Bo1,*
摘要:
交替氧化酶(alternative oxidase, AOX)是一种重要的线粒体末端氧化酶,在植物抵御非生物胁迫中扮演着关键角色。豆科作物作为植物蛋白的重要来源,在农业可持续发展中发挥着重要作用。然而,近年来频发的极端气候对豆科作物的产量和品质造成了严重影响,提高其耐逆性已成为亟待解决的问题。本研究对大豆、普通菜豆、宽叶菜豆和绿豆4种豆科作物的AOX基因家族进行了系统性的鉴定和分析,包括蛋白结构、理化性质、启动子顺式作用元件,以及普通菜豆AOX基因在多种非生物胁迫下的表达模式。家族成员鉴定发现,大豆、普通菜豆、宽叶菜豆和绿豆分别包含4个、3个、3个和3个AOX基因,亲缘关系分析将其划分为3个不同的亚族。顺式作用元件分析结果显示,豆科作物AOX基因启动子区域存在很多响应激素和逆境胁迫的顺式作用元件。对普通菜豆AOX基因在不同非生物胁迫下的表达模式进行分析发现,其AOX同源基因对不同非生物胁迫刺激响应存在差异,表现出多样的时序变化模式。其中,PvAOX1A;2受多种非生物胁迫的诱导显著上调表达。而PvAOX2;2_2受盐胁迫和高温胁迫诱导显著上调表达,PvAOX2;2_1受冷胁迫诱导显著上调表达。综上,普通菜豆AOX基因可能在其应答非生物胁迫中发挥着重要作用。本研究相关结果不仅为深入探究豆科作物AOX基因的生物学功能提供了重要线索,也为普通菜豆耐逆性的分子改良提供了潜在的靶基因。
[1] Florez-Sarasa I, Ribas-Carbo M, Del-Saz N F, Schwahn K, Nikoloski Z, Fernie A R, Flexas J. Unravelling the in vivo regulation and metabolic role of the alternative oxidase pathway in C3 species under photoinhibitory conditions. New Phytol, 2016, 212: 66–79. [2] Selinski J, Scheibe R, Day D A, Whelan J. Alternative oxidase is positive for plant performance. Trends Plant Sci, 2018, 23: 588–597. [3] Feng H Q, Guan D D, Sun K, Wang Y F, Zhang T G, Wang R F. Expression and signal regulation of the alternative oxidase genes under abiotic stresses. Acta Biochim Biophys Sin, 2013, 45: 985–994. [4] Clifton R, Harvey Millar A H, Whelan J. Alternative oxidases in Arabidopsis: a comparative analysis of differential expression in the gene family provides new insights into function of non-phosphorylating bypasses. Biochim Biophys Acta, 2006, 1757: 730–741. [5] Zhang H, Luo Y D, Wang Y J, Zhao J, Wang Y Y, Li Y J, Pu Y H, Wang X C, Ren X M, Zhao B. Genome-wide identification and characterization of Alternative oxidase (AOX) genes in foxtail millet (Setaria italica): insights into their abiotic stress response. Plants, 2024, 13: 2565. [6] Zhang S L, Yan C P, Lu T R, Fan Y C, Ren Y M, Zhao J S, Shan X J, Guan Y Y, Song P W, Li D F, et al. New insights into molecular features of the genome-wide AOX family and their responses to various stresses in common wheat (Triticum aestivum L.). Gene, 2023, 888: 147756. [7] 王慧, 马艺文, 乔正浩, 常彦彩, 术琨, 丁海萍, 聂永心, 潘光堂. AOX基因家族的结构和功能特征分析. 生物技术通报, 2022, 38(7): 160–170. Wang H, Ma Y W, Qiao Z H, Chang Y C, Shu K, Ding H P, Nie Y X, Pan G T. Structural and functional characterization of AOX gene family. Biotechnol Bull, 2022, 38(7): 160–170 (in Chinese with English abstract). [8] Sweetman C, Soole K L, Jenkins C L D, Day D A. Genomic structure and expression of alternative oxidase genes in legumes. Plant Cell Environ, 2019, 42: 71–84. [9] Oh G G K, O’Leary B M, Signorelli S, Millar A H. Alternative oxidase (AOX) 1a and 1d limit proline-induced oxidative stress and aid salinity recovery in Arabidopsis. Plant Physiol, 2022, 188: 1521–1536. [10] Aziz S, Germano T A, Thiers K L L, Batista M C, de Souza Miranda R, Arnholdt-Schmitt B, Costa J H. Transcriptome analyses in a selected gene set indicate alternative oxidase (AOX) and early enhanced fermentation as critical for salinity tolerance in rice. Plants, 2022, 11: 2145. [11] Considine M J, Holtzapffel R C, Day D A, Whelan J, Millar A H. Molecular distinction between alternative oxidase from monocots and dicots. Plant Physiol, 2002, 129: 949–953. [12] Costa J H, Mota E F, Cambursano M V, Lauxmann M A, de Oliveira L M N, Silva Lima M D, Orellano E G, Fernandes de Melo D. Stress-induced co-expression of two alternative oxidase (VuAox1 and 2b) genes in Vigna unguiculata. J Plant Physiol, 2010, 167: 561–570. [13] Brasileiro A C M, Morgante C V, Araujo A C G, Leal-Bertioli S C M, Silva A K, Martins A C Q, Vinson C C, Santos C M R, Bonfim O, Togawa R C, et al. Transcriptome profiling of wild Arachis from water-limited environments uncovers drought tolerance candidate genes. Plant Mol Biol Rep, 2015, 33: 1876–1892. [14] Bartoli C G, Gomez F, Gergoff G, Guiamét J J, Puntarulo S. Up-regulation of the mitochondrial alternative oxidase pathway enhances photosynthetic electron transport under drought conditions. J Exp Bot, 2005, 56: 1269–1276. [15] Gandin A, Duffes C, Day D A, Cousins A B. The absence of alternative oxidase AOX1A results in altered response of photosynthetic carbon assimilation to increasing CO2 in Arabidopsis thaliana. Plant Cell Physiol, 2012, 53: 1627–1637. [16] Parsons H L, Yip J Y, Vanlerberghe G C. Increased respiratory restriction during phosphate-limited growth in transgenic tobacco cells lacking alternative oxidase. Plant Physiol, 1999, 121: 1309–1320. [17] Ohtsu K, Ito Y, Saika H, Nakazono M, Tsutsumi N, Hirai A. ABA-independent expression of rice alternative oxidase genes under environmental stresses. Plant Biotechnol, 2002, 19: 187–190. [18] Weston D J, Karve A A, Gunter L E, Jawdy S S, Yang X H, Allen S M, Wullschleger S D. Comparative physiology and transcriptional networks underlying the heat shock response in Populus trichocarpa, Arabidopsis thaliana and Glycine max. Plant Cell Environ, 2011, 34: 1488–1506. [19] Li D F, Su Z, Dong J L, Wang T. An expression database for roots of the model legume Medicago truncatula under salt stress. BMC Genomics, 2009, 10: 517. [20] Wu J, Wang L F, Fu J J, Chen J B, Wei S H, Zhang S L, Zhang J, Tang Y S, Chen M L, Zhu J F, et al. Resequencing of 683 common bean genotypes identifies yield component trait associations across a north-south cline. Nat Genet, 2020, 52: 118–125. [21] Nawaz M, Sun J f, Shabbir S, Khattak W A, Ren G Q, Nie X J, Bo Y W, Javed Q, Du D L. A review of plants strategies to resist biotic and abiotic environmental stressors. Sci Total Environ, 2023, 900: 165832. [22] Nadarajah K K. ROS homeostasis in abiotic stress tolerance in plants. Int J Mol Sci, 2020, 21: 5208. [23] Waadt R, Seller C A, Hsu P K, Takahashi Y, Munemasa S, Schroeder J I. Plant hormone regulation of abiotic stress responses. Nat Rev Mol Cell Biol, 2022, 23: 680–694. [24] Brown M T. Understanding the Common bean (Phaseolus vulgaris L.) Transcriptome in Response to Salinity Stress. MS Thesis of Delaware State University, Dover, Delaware, America, 2019. [25] 李龙, 王兰芬, 武晶, 景蕊莲, 王述民. 普通菜豆抗旱生理特性. 作物学报, 2014, 40: 702–710. Li L, Wang L F, Wu J, Jing R L, Wang S M. Physiological characteristics of drought resistance in common bean (Phaseolus vulgaris L.). Acta Agron Sin, 2014, 40: 702–710 (in Chinese with English abstract). [26] Zhang B S, Liu Z, Zhou R N, Cheng P, Li H B, Wang Z Y, Liu Y, Li M Y, Zhao Z Q, Hu Z B, et al. Genome-wide analysis of soybean DnaJA-family genes and functional characterization of GmDnaJA6 responses to saline and alkaline stress. Crop J, 2023, 11: 1230–1241. [27] Chen C J, Wu Y, Li J W, Wang X, Zeng Z H, Xu J, Liu Y L, Feng J T, Chen H, He Y H, et al. TBtools-II: a “one for all, all for one” bioinformatics platform for biological big-data mining. Mol Plant, 2023, 16: 1733–1742. [28] Geourjon C, Deléage G. SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Comput Appl Biosci, 1995, 11: 681–684. [29] Horton P, Park K J, Obayashi T, Fujita N, Harada H, Adams-Collier C J, Nakai K T. WoLF PSORT: protein localization predictor. Nucleic Acids Res, 2007, 35: W585–W587. [30] 刘佳, 邹晓悦, 马继芳, 王永芳, 董志平, 李志勇, 白辉. 谷子MAPK家族成员的鉴定及其对生物胁迫的响应分析. 作物学报, 2023, 49: 1480–1495. Liu J, Zou X Y, Ma J F, Wang Y F, Dong Z P, Li Z Y, Bai H. Genome-wide identification and characterization of MAPK genes and their response to biotic stresses in foxtail millet. Acta Agron Sin, 2023, 49: 1480–1495 (in Chinese with English abstract). [31] 侯思宇, 王欣芳, 杜伟, 冯晋华, 韩渊怀, 李红英, 刘龙龙, 孙朝霞. 苦荞WOX家族全基因组鉴定及响应愈伤诱导率表达分析. 中国农业科学, 2021, 54: 3573–3586. Hou S Y, Wang X F, Du W, Feng J H, Han Y H, Li H Y, Liu L L, Sun Z X. Genome-wide identification of WOX family and expression analysis of callus induction rate in Tartary buckwheat. Sci Agric Sin, 2021, 54: 3573–3586 (in Chinese with English abstract). [32] Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouzé P, Rombauts S. PlantCARE, a database of plant Cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res, 2002, 30: 325–327. [33] Borges A, Tsai S M, Caldas D G G. Validation of reference genes for RT-qPCR normalization in common bean during biotic and abiotic stresses. Plant Cell Rep, 2012, 31: 827–838. [34] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-Delta Delta C(T)) method. Methods, 2001, 25: 402–408. [35] 郝候艳. 拟南芥AOX的功能分析. 西北大学硕士学位论文, 陕西西安, 2019. Hao H Y. The Functional Analysis of AOX in Arabidopsis thaliana. MS Thesis of Northwest University, Xi’an, Shaanxi, China, 2019 (in Chinese with English abstract). [36] Moore A L, Albury M S, Crichton P G, Affourtit C. Function of the alternative oxidase: is it still a scavenger? Trends Plant Sci, 2002, 7: 478–481. [37] Ahmad B, Zhang S L, Yao J, Rahman M U, Hanif M, Zhu Y X, Wang X P. Genomic organization of the B3-domain transcription factor family in grapevine (Vitis vinifera L.) and expression during seed development in seedless and seeded cultivars. Int J Mol Sci, 2019, 20: 4553. [38] Xu G X, Guo C C, Shan H Y, Kong H Z. Divergence of duplicate genes in exon-intron structure. Proc Natl Acad Sci USA, 2012, 109: 1187–1192. [39] Yang H L, Deng L B, Liu H F, Fan S H, Hua W, Liu J. Overexpression of BnaAOX1b confers tolerance to osmotic and salt stress in rapeseed. G3, 2019, 9: 3501–3511. [40] Costa J H, Hasenfratz-Sauder M P, Pham-Thi A T, da Guia Silva Lima M, Dizengremel P, Jolivet Y, Fernandes de Melo D. Identification in Vigna unguiculata (L.) Walp. of two cDNAs encoding mitochondrial alternative oxidase orthologous to soybean alternative oxidase genes 2a and 2b. Plant Sci, 2004, 167: 233–239. [41] 张云, 王丹媚, 王孝源, 任晴雯, 唐可, 张丽宇, 吴玉环, 刘鹏. 外源茉莉酸对菊芋镉胁迫下光合特性及镉积累的影响. 作物学报, 2021, 47: 2490–2500. Zhang Y, Wang D M, Wang X Y, Ren Q W, Tang K, Zhang L Y, Wu Y H, Liu P. Effects of exogenous jasmonic acid on photosynthetic characteristics and cadmium accumulation of Helianthus tuberosus L. under cadmium stress. Acta Agron Sin, 2021, 47: 2490–2500 (in Chinese with English abstract). [42] Pang F, Solanki M K, Xing Y X, Dong D F, Wang Z. Streptomyces improves sugarcane drought tolerance by enhancing phenylalanine biosynthesis and optimizing the rhizosphere environment. Plant Physiol Biochem, 2024, 217: 109236. [43] Mishra S, Roychowdhury R, Ray S, Hada A, Kumar A, Sarker U, Aftab T, Das R. Salicylic acid (SA)-mediated plant immunity against biotic stresses: an insight on molecular components and signaling mechanism. Plant Stress, 2024, 11: 100427. [44] 刘美君. 线粒体交替氧化酶呼吸途径对植物叶片的光破坏防御作用及其调控机制. 山东农业大学博士学位论文, 山东泰安, 2016. Liu M J. The Role and Up-Regulation Mechanism of Mitochondrial Alternative Oxidase Pathway in Plant Photoprotection. PhD Dissertation of Shandong Agricultural University, Tai’an, Shandong, China, 2016 (in Chinese with English abstract). [45] Li C R, Liang D D, Li J, Duan Y B, Li H, Yang Y C, Qin R Y, Li L, Wei P C, Yang J B. Unravelling mitochondrial retrograde regulation in the abiotic stress induction of rice ALTERNATIVE OXIDASE 1 genes. Plant Cell Environ, 2013, 36: 775–788. Wang X J, Geng X, Bi X R, Li R C, Chen Y Z, Lu C F. Genome-wide identification of AOX family genes in Moso bamboo and functional analysis of PeAOX1b_2 in drought and salinity stress tolerance. Plant Cell Rep, 2022, 41: 2321–2339. |
[1] | 沈傲, 刘敏, 倪迪安, 刘炜. 谷子m6A甲基化转移酶基因SiMTA1的启动子序列特征和基因表达模式分析[J]. 作物学报, 2025, 51(7): 1969-1978. |
[2] | 郭冰, 秦家范, 李娜, 宋梦瑶, 王黎明, 李君霞, 马小倩. 谷子SHMT基因家族全基因组鉴定与表达分析[J]. 作物学报, 2025, 51(3): 586-5897. |
[3] | 徐林珊, 郜耿东, 王宇, 王家星, 杨吉招, 武亚瑞, 张宵寒, 常影, 李真, 谢雄泽, 龚德平, 王晶, 葛贤宏. 甘蓝型油菜漆酶基因家族成员表达模式及与茎秆抗折力的关联分析[J]. 作物学报, 2025, 51(1): 134-148. |
[4] | 祁稼民, 许春苗, 肖斌. 马铃薯TIFY基因家族的全基因组鉴定及表达分析[J]. 作物学报, 2024, 50(9): 2297-2309. |
[5] | 刘宸铭, 赵克勇, 悦曼芳, 赵延明, 吴忠义, 张春. 玉米转录因子ZmEREB180调控根系生长发育及耐逆的功能研究[J]. 作物学报, 2024, 50(8): 1920-1933. |
[6] | 刘震, 陈丽敏, 李志涛, 朱金勇, 王玮璐, 齐喆颖, 姚攀锋, 毕真真, 孙超, 白江平, 刘玉汇. 马铃薯ARM基因家族的全基因组鉴定及表达分析[J]. 作物学报, 2024, 50(6): 1451-1466. |
[7] | 殷祥贞, 赵健鑫, 郝翠翠, 潘丽娟, 陈娜, 许静, 姜骁, 赵旭红, 王恩琪, 曹欢, 禹山林, 迟晓元. 花生转录因子基因AhWRI1的克隆及表达分析[J]. 作物学报, 2024, 50(12): 3155-3164. |
[8] | 左春阳, 李亚玮, 李焱龙, 金双侠, 朱龙付, 张献龙, 闵玲. 陆地棉漆酶基因家族成员表达模式分析[J]. 作物学报, 2023, 49(9): 2344-2361. |
[9] | 文利超, 熊涛, 邓智超, 刘涛, 郭存, 李伟, 郭永峰. 烟草转录因子NtNAC080在非生物胁迫下的表达分析及功能鉴定[J]. 作物学报, 2023, 49(8): 2171-2182. |
[10] | 马春敏, 李维希, 李芳军, 田晓莉, 李召虎. 陆地棉硝酸盐转运体NRT基因家族鉴定及表达分析[J]. 作物学报, 2023, 49(6): 1496-1517. |
[11] | 周宾寒, 杨竹, 王书平, 方正武, 胡赞民, 徐兆师, 张迎新. 小麦幼苗活性LTR反转录转座子筛选及其对非生物胁迫的响应[J]. 作物学报, 2023, 49(4): 966-977. |
[12] | 徐子寅, 于晓玲, 邹良平, 赵平娟, 李文彬, 耿梦婷, 阮孟斌. 木薯MYB转录因子基因MeMYB60表达特征分析及其互作蛋白筛选[J]. 作物学报, 2023, 49(4): 955-965. |
[13] | 孙全喜, 苑翠玲, 牟艺菲, 闫彩霞, 赵小波, 王娟, 王奇, 孙慧, 李春娟, 单世华. 花生SWEET基因全基因组鉴定及表达分析[J]. 作物学报, 2023, 49(4): 938-954. |
[14] | 邓照, 蒋环琪, 程丽沙, 刘睿, 黄敏, 李曼菲, 杜何为. 利用WGCNA鉴定玉米非生物胁迫相关基因共表达网络[J]. 作物学报, 2023, 49(3): 672-686. |
[15] | 黄震, 吴启境, 陈灿妮, 吴霞, 曹珊, 张辉, 岳娇, 胡亚丽, 罗登杰, 李赟, 廖长君, 李茹, 陈鹏. 钙调素基因(HcCaM7)及其蛋白乙酰化修饰参与红麻响应非生物胁迫的作用[J]. 作物学报, 2023, 49(2): 402-413. |
|