欢迎访问作物学报,今天是

作物学报 ›› 2025, Vol. 51 ›› Issue (8): 2060-2076.doi: 10.3724/SP.J.1006.2025.44197

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

陆地棉杜松烯合酶基因GhCDN10的特征及其在棉酚合成中功能分析

薛晓菲1(), 戴云静1, 李熙林1, 丁艳艳1, 王翔1, 雷长英1, 韩焕勇2,*(), 贺道华1,*()   

  1. 1西北农林科技大学农学院, 陕西杨凌 712100
    2新疆农垦科学院棉花研究所, 新疆石河子 832099
  • 收稿日期:2024-11-30 接受日期:2025-04-27 出版日期:2025-08-12 网络出版日期:2025-05-13
  • 通讯作者: *贺道华, E-mail: daohuahe@nwafu.edu.cn;韩焕勇, E-mail: hanhy1@163.com
  • 作者简介:E-mail: 2496051139@qq.com
  • 基金资助:
    国家自然科学基金项目(32301956);西北农林科技大学科研启动费项目(2452023053);财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-15-25)

Characterization of GhCDN10 encoding cadinene synthase and its involvement in gossypol biosynthesis pathway in Gossypium hirsutum

XUE Xiao-Fei1(), DAI Yun-Jing1, LI Xi-Lin1, DING Yan-Yan1, WANG Xiang1, LEI Zhang-Ying1, HAN Huan-Yong2,*(), HE Dao-Hua1,*()   

  1. 1College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
    2Xinjiang Academy of Agricultural and Reclamation Science, Shihezi 832099, Xinjiang, China
  • Received:2024-11-30 Accepted:2025-04-27 Published:2025-08-12 Published online:2025-05-13
  • Contact: *E-mail: daohuahe@nwafu.edu.cn;E-mail: hanhy1@163.com
  • Supported by:
    National Natural Science Foundation of China(32301956);PhD Start-up Research Fund of Northwest A&F University(2452023053);China Agriculture Research System of MOF and MARA(CARS-15-25)

摘要:

棉酚是储存在棉花色素腺体的萜烯类化合物, 其合成与杜松烯合酶(cadinene synthase, CDNs)密切相关。棉籽含有大量棉酚, 由于棉酚有毒, 限制了人类对棉籽的充分利用, 研究棉酚合成相关基因, 为创制“棉花植株高棉酚种子低棉酚”材料提供基因资源, 对多用途棉花新品种的培育具有十分重要的意义。本研究从陆地棉杜松烯合酶基因家族的转录组数据中筛选出GhCDN10基因, 对其进行克隆与序列分析; 基于自然群体的基因组重测序数据对该基因进行序列多样性、连锁不平衡(LD)和单核苷酸多态性(SNP)效应及单倍型分析, 结合‘棉酚有无’的表型进行关联分析; 通过qRT-PCR和转录组RNA-Seq对其进行表达模式分析; 通过病毒介导的基因沉默(VIGS)进行功能分析, 并进行亚细胞定位。结果表明, GhCDN10由7个外显子组成, 上下游的基因间区(IRs)共包含63种类型的顺式作用元件, 共533个。重测序数据显示, GhCDN10的SNP频率为7.22 SNPs kb-1, 核苷酸多样性π值为0.22595, LD衰减距离为100 kb左右, DNA区段有19个SNP位点, 构成9个单倍型; 关联分析显示, GhCDN10的19个SNP位点与‘棉酚有无’无显著关联; 聚类分析基本能有效地将无酚棉资源和有酚棉资源分开。GhCDN10蛋白含有PF01397和PF03936两个保守结构域, 及杜松烯合酶特有的DDTYD、DDVAE等序列模体; 亚细胞定位显示该基因产物位于细胞膜和细胞核中; 17个物种的同源基因在基因结构、motif组成上存在细微的差异。RNA-Seq数据表明, GhCDN10在有腺体棉中的表达量显著高于无腺体棉, 在根中表达量较高, 而在花和纤维中表达量很低或不表达。VIGS沉默后GhCDN10的表达量显著降低, 仅为对照组的21.3%; 通过体视显微镜观察计数叶片中的腺体数量和利用高效液相色谱法(HPLC)测定叶片中棉酚的含量发现, 沉默植株的腺体数量和棉酚含量显著低于对照组。本研究结果为进一步剖析棉酚合成途径提供了新见解, 也为通过基因工程创制低棉酚材料提供了基因资源。

关键词: 陆地棉(Gossypium hirsutum), 杜松烯合酶, GhCDN10, 棉酚, 基因克隆, VIGS

Abstract:

Gossypol is a major terpenoid compound in cotton (Gossypium hirsutum), predominantly stored in pigment glands distributed throughout the plant. Cadinene synthase is a key enzyme involved in the gossypol biosynthetic pathway. Due to its toxicity, large quantities of cottonseed products cannot be fully utilized for human consumption. Therefore, the development of new cultivars featuring “plants with high gossypol content but seeds with none or low levels of gossypol” is essential to maximize the value of the cotton industry. Based on RNA-Seq data from glanded and glandless cotton, we cloned GhCDN10, a member of the cadinene synthase gene family, and conducted DNA sequence analysis, including linkage disequilibrium (LD), SNP effect prediction, haplotype construction, and association analysis. We also performed expression profiling, virus-induced gene silencing (VIGS), and subcellular localization assays. GhCDN10 comprises seven exons, and its flanking intergenic regions (IRs) contain 533 cis-acting elements from 63 classes. Re-sequencing data revealed a SNP frequency of 7.22 SNPs kb-1 in GhCDN10, with anucleotide diversity (π) value of 0.22595 and an LD decay distance of approximately 100 kb. Nineteen SNPs were identified within the gene body, forming nine haplotypes. Although these SNPs were not directly associated with gossypol content, cluster analysis based on them could partially distinguish low-gossypol from normal accessions. The GhCDN10 protein contains two conserved domains (PF01397 and PF03936) and conserved motifs such as DDTYD and DDVAE, characteristic of cadinene synthase. Subcellular localization of the GFP fusion protein showed that GhCDN10 is localized to both the plasma membrane and nucleus. Comparative analysis revealed slight variations in exon-intron structure and motif arrangement among GhCDN10 orthologs from 17 species. RNA-Seq data showed significantly higher GhCDN10 expression in glanded cotton compared to glandless cotton. This gene is highly expressed in roots of glanded cotton but shows low or no expression in flowers and fibers. Following VIGS treatment, GhCDN10 expression decreased to 21.3% of the control level. Microscopic analysis and HPLC quantification revealed significantly reduced gland numbers and gossypol content in VIGS plants, highlighting the critical role of GhCDN10 in gossypol biosynthesis and pigment gland development. This study provides new insights into the gossypol biosynthetic pathway and identifies GhCDN10 as a promising candidate gene for the development of glandless cotton germplasm through genetic engineering.

Key words: Gossypium hirsutum, Delta-cadinene synthase, GhCDN10, gossypol, cloning, VIGS

表1

本研究所用引物"

引物名称
Primer name
引物序列
Primer sequence (5'-3')
用途
Purpose
GhCDN10_CF GATCAATCGAAATGGCTTCACAAGT 基因克隆Gene cloning
GhCDN10_CR AAGCTATAGCGACGAAAGAAGGA 基因克隆Gene cloning
GhCDN10_SF TGC TCTAGAGGGTGTGAGTTACCATTTCACTAAGG VIGS
GhCDN10_SR CGG GGTACCCTTAAATGGTTGGTGGTGAAAGAAATTGC VIGS
GhCDN10_QF TGCGTCCCAAAGCCGATT qRT-PCR
GhCDN10_QR TGTTGGTGGCGCTTTTCAG qRT-PCR
GhCDN10_LF GTTCTTCACTGTTGATA CATATGATGGCTTCACAAGTTTCTCAAATGCC 亚细胞定位Subcellular localization
GhCDN10_LR TACCACCGCTACC GTCGACAAGTGCAACTGGTTCAATGAG 亚细胞定位Subcellular localization
UBQ7_QF GAAGGCATTCCACCTGACCAAC 内参基因Internal control gene
UBQ7_QR CTTGACCTTCTTCTTCTTGTGCTTG 内参基因Internal control gene

图1

GhCDN10基因的PCR扩增和基因序列比较 A: GhCDN10基因的PCR扩增; M: 5000 bp DNA marker; 泳道1: 以‘86 III 72’ gDNA为模板的PCR扩增产物; 泳道2: 以‘86 III 72 glandless’ gDNA为模板的PCR扩增产物。B: 有腺体棉和无腺体棉PCR扩增产物的序列比较; a: TM-1参考基因组的序列; b: 以‘86 III 72 glandless’ gDNA为模板PCR产物的基因序列; c: 以‘86 III 72’ gDNA为模板PCR产物的基因序列。"

图2

GhCDN10基因外显子-内含子、motif结构、SNP标记间的LD特征和单倍型 A: GhCDN10基因结构(外显子-内含子); B: 基因GhCDN10 DNA区段的SNP位点间的LD; C: 基因GhCDN10全域区段SNP位点间的LD衰减曲线; D: 基因GhCDN10的群体单倍型分析; E: 基因GhCDN10 DNA区段的SNP变异位点信息。"

表2

GhCDN10基因的序列特征"

染色体片段
Chromosomal
segment
起止位置
Start-end
长度
Length (bp)
顺式作用元件
Cis-acting element
SNP频率
SNPs frequency
(SNPs kb-1)
序列多样性
Sequence diversity
类型
Types
数量Number 数量
Number
频率
Frequency
π值
π value
θ值
θ value
基因间区(上游)
Intergenic region (upstream)
4,665,043-4,748,046 83,004 34 172 1176 14.19208713 0.16563 0.12901
DNA区段
DNA body
4,748,047-4,750,955 2909 38 240 19 7.21897559 0.22595 0.12646
基因间区(下游)
Intergenic region (downstream)
4,750,956-4,875,091 124,136 31 121 2914 23.49036541 0.17492 0.12557
全域区段
Whole segment
4,665,043-4,875,091 210,049 103 533 4109 19.57162376 0.17281 0.12647

图3

基于GhCDN10的DNA区段的SNP对32份种质材料的聚类分析 黑色字体和红色字体分别表示有酚棉种质和无酚棉种质。"

图4

GhCDN10氨基酸序列系统进化树(A)、基序组成(B)和外显子-内含子结构(C)"

图5

GhCDN10蛋白的二级结构(A)和三级结构(B)预测 蓝色: α-螺旋; 红色: β-折叠; 绿色: 延伸链; 紫色: 无规则卷曲。"

图6

GhCDN10基因表达模式 A: 有腺体棉和无腺体棉14、16、32 DPA的胚中基因表达谱(RNA-Seq); B: 有腺体棉和无腺体棉的叶中基因表达谱(RNA-Seq); C: 不同组织、不同发育时期GhCDN10的表达谱(RNA-Seq); D: 陆地棉根光照和根黑暗处理后基因的表达谱(RNA-Seq); E: 有腺体植株TM-1及其VIGS植株的根和茎、无腺体植株T582的根、茎中基因的表达谱(RNA-Seq); F: 有腺体棉和无腺体棉叶片和胚珠中基因的表达谱(RNA-Seq); G: qRT-PCR验证基因表达丰度; H: RNA-Seq与qRT-PCR表达丰度比较(验证); 柱状图: 部分组织qRT-PCR试验的基因表达丰度; 折线图: RNA-Seq数据中的基因表达丰度。不同小写字母代表在0.05水平差异显著。DPA: 开花后天数。"

图7

表达水平与GhCDN10基因相关的基因集的GO (A)与KEGG (B)富集分析"

图8

GhCDN10基因的VIGS分析 A: GhCDN10基因VIGS片段的PCR扩增; M: 2000 bp DNA Marker; 1: PCR扩增产物; B, C: VIGS沉默后的棉花形态及PDS基因的沉默效果; D, E: 分别用携带TRV2::GUS和TRV2::GhCDN10载体的农杆菌注射植物后的叶片(示腺体数量与密度); F: VIGS沉默后基因GhCDN10的qRT-PCR定量; G: VIGS沉默后棉花叶片的腺体数量; H: VIGS沉默后棉花叶片的棉酚含量; I, J: 棉酚的液相色谱图(左图: 棉酚标准品; 右图: 参试样品)。不同小写字母表示在P < 0.05水平差异显著。"

图9

GhCDN10-GFP融合蛋白亚细胞定位"

[1] 肖水平, 宋国立, 余进祥. 棉花纤维品质相关基因挖掘及功能基因研究进展. 棉花科学, 2020, 42(2): 3-14.
Xiao S P, Song G L, Yu J X. Research progress of cotton fiber quality related gene mining and functional genes. Cotton Sci, 2020, 42(2): 3-14 (in Chinese with English abstract).
[2] Chen Y R, Liu Y X, Chen Y D, Zhang Y G, Zan X J. Design and preparation of polysulfide flexible polymers based on cottonseed oil and its derivatives. Polymers, 2020, 12: 1858.
[3] 乔丹, 白冰楠, 葛群, 刘小芳, 栾玉娟, 牛皓, 龚举武, 巩万奎, 闫浩亮, 李俊文, 等. 棉籽大小数量性状核苷酸定位及候选基因初步筛选. 中国棉花, 2024, 51(4): 25-34.
doi: 10.11963/cc20230166
Qiao D, Bai B N, Ge Q, Liu X F, Luan Y J, Niu H, Gong J W, Gong W K, Yan H L, Li J W, et al. Quantitative trait nucleotides mapping of cottonseed size-related traits and preliminary screening of candidate genes. China Cotton, 2024, 51(4): 25-34 (in Chinese with English abstract).
doi: 10.11963/cc20230166
[4] Jan M, Liu Z X, Guo C X, Zhou Y P, Sun X W. An overview of cotton gland development and its transcriptional regulation. Int J Mol Sci, 2022, 23: 4892.
[5] Janga M R, Pandeya D, Campbell L M, Konganti K, Villafuerte S T, Puckhaber L, Pepper A, Stipanovic R D, Scheffler J A, Rathore K S. Genes regulating gland development in the cotton plant. Plant Biotechnol J, 2019, 17: 1142-1153.
doi: 10.1111/pbi.13044 pmid: 30467959
[6] Wu C F, Cheng H L, Li S Y, Zuo D Y, Lin Z X, Zhang Y P, Lyu L M, Wang Q L, Song G L. Molecular cloning and characterization of GhERF105, a gene contributing to the regulation of gland formation in upland cotton (Gossypium hirsutum L.). BMC Plant Biol, 2021, 21: 102.
[7] 董燕梅, 张文颖, 凌正一, 李靖锐, 白红彤, 李慧, 石雷. 转录因子调控植物萜类化合物生物合成研究进展. 植物学报, 2020, 55: 340-350.
doi: 10.11983/CBB19186
Dong Y M, Zhang W Y, Ling Z Y, Li J R, Bai H T, Li H, Shi L. Advances in transcription factors regulating plant terpenoids biosynthesis. Chin Bull Bot, 2020, 55: 340-350 (in Chinese with English abstract).
[8] Brandt W, Bräuer L, Günnewich N, Kufka J, Rausch F, Schulze D, Schulze E, Weber R, Zakharova S, Wessjohann L. Molecular and structural basis of metabolic diversity mediated by prenyldiphosphate converting enzymes. Phytochemistry, 2009, 70: 1758-1775.
doi: 10.1016/j.phytochem.2009.09.001 pmid: 19878958
[9] Köllner T G, Lenk C, Schnee C, Köpke S, Lindemann P, Gershenzon J, Degenhardt J. Localization of sesquiterpene formation and emission in maize leaves after herbivore damage. BMC Plant Biol, 2013, 13: 15.
doi: 10.1186/1471-2229-13-15 pmid: 23363415
[10] 付建玉. 茶树倍半萜类物质代谢及其对虫害胁迫响应. 中国农业科学院博士学位论文, 北京, 2017.
Fu J Y. The Sesquiterpene Metabolism and Response to Diverse Biotic Stresses in Tea Plant. PhD Dissertation of Chinese Academy of Agricultural Sciences, Beijing, China, 2017 (in Chinese with English abstract).
[11] Bayendi Loudit S M, Boullis A, Verheggen F, Francis F. Identification of the alarm pheromone of cowpea aphid, and comparison with two other Aphididae species. J Insect Sci, 2018, 18: 1.
[12] Sun Y, Huang X Z, Ning Y S, Jing W X, Bruce T J A, Qi F J, Xu Q X, Wu K M, Zhang Y J, Guo Y Y. TPS46, a rice terpene synthase conferring natural resistance to bird cherry-oat aphid, Rhopalosiphum padi (Linnaeus). Front Plant Sci, 2017, 8: 110.
[13] Wang C Y, Chen Z Z, Guo Y X, Sun H J, Zhang G L, Kuang M G, Yang S X, Li X M, Díaz de la Garza R I, Gou J Y. Isolation of wheat mutants with higher grain phenolics to enhance anti-oxidant potential. Food Chem, 2020, 303: 125363.
[14] 项时康, 杨伟华. 棉属植物种子中棉酚及其旋光体的研究. 中国农业科学, 1993, 26(6): 31-35.
Xiang S K, Yang W H. Studies on gossypol and its enantiomers in the seeds of cotton Gossypium. Sci Agric Sin, 1993, 26(6): 31-35 (in Chinese with English abstract).
[15] 张长波, 孙红霞, 巩中军, 祝增荣. 植物萜类化合物的天然合成途径及其相关合酶. 植物生理学通讯, 2007, 43: 779-786.
Zhang C B, Sun H X, Gong Z J, Zhu Z R. Plant terpenoid natural metabolism pathways and their synthases. Plant Physiol Commun, 2007, 43: 779-786 (in Chinese with English abstract).
[16] Liu W, Zhang Z Q, Li W, Zhu W, Ren Z Y, Wang Z Y, Li L L, Jia L, Zhu S J, Ma Z B. Genome-wide identification and comparative analysis of the 3-hydroxy-3-methylglutaryl coenzyme a reductase (HMGR) gene family in Gossypium. Molecules, 2018, 23: 193.
[17] 陈新, 李玲玲, 吕慧贞, 刘庆忠, 张元湖. 法呢基焦磷酸(FPP)的生物合成及其分子调控. 生物技术通报, 2007, 23(2): 67-71.
Chen X, Li L L, Lyu H Z, Liu Q Z, Zhang Y H. The biosynthetic pathway and molecular regulation of farnesyl diphosphate (FPP). Biotechnol Bull, 2007, 23(2): 67-71 (in Chinese with English abstract).
[18] 周婷, 郭三堆, 张锐. 棉花杜松烯合成酶基因的克隆及其表达分析. 生物技术进展, 2011, 1(3): 207-213.
doi: 10.3969/j.issn.2095-2341.2011.03.10
Zhou T, Guo S D, Zhang R. Cloning and expression analysis of cotton GhCdn gene. Curr Biotechnol, 2011, 1(3): 207-213 (in Chinese with English abstract).
[19] Martin G S, Liu J G, Benedict C R, Stipanovic R D, Magill C W. Reduced levels of cadinane sesquiterpenoids in cotton plants expressing antisense (+)-delta-cadinene synthase. Phytochemistry, 2003, 62: 31-38.
pmid: 12475616
[20] 张娜, 赵佩, 沈法富. 陆地棉三个WRKY基因的克隆及表达分析. 分子植物育种, 2012, 10: 169-173.
Zhang N, Zhao P, Shen F F. Cloning and expression analysis of 3 WRKY genes from upland cotton. Mol Plant Breed, 2012, 10: 169-173 (in Chinese with English abstract).
[21] Zhang C P, Zhang J L, Sun Z R, Liu X Y, Shu L Z, Wu H, Song Y, He D H. Genome-wide identification and characterization of terpene synthase genes in Gossypium hirsutum. Gene, 2022, 828: 146462.
[22] Chen X Y, Chen Y, Heinstein P, Davisson V J. Cloning, expression, and characterization of (+)-delta-cadinene synthase: a catalyst for cotton phytoalexin biosynthesis. Arch Biochem Biophys, 1995, 324: 255-266.
doi: 10.1006/abbi.1995.0038 pmid: 8554317
[23] Davis E M, Tsuji J, Davis G D, Pierce M L, Essenberg M. Purification of (+)-delta-cadinene synthase, a sesquiterpene cyclase from bacteria-inoculated cotton foliar tissue. Phytochemistry, 1996, 41: 1047-1055.
pmid: 8728715
[24] 任丹凤. 利用CAD1基因调控创造低酚棉材料. 华中农业大学硕士学位论文, 湖北武汉, 2018.
Ren D F. Creating Low-Gossypol Cotton Material by Regulating CAD1Gene. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2018 (in Chinese with English abstract).
[25] Sunilkumar G, Campbell L M, Puckhaber L, Stipanovic R D, Rathore K S. Engineering cottonseed for use in human nutrition by tissue-specific reduction of toxic gossypol. Proc Natl Acad Sci USA, 2006, 103: 18054-18059.
doi: 10.1073/pnas.0605389103 pmid: 17110445
[26] Palle S R, Campbell L M, Pandeya D, Puckhaber L, Tollack L K, Marcel S, Sundaram S, Stipanovic R D, Wedegaertner T C, Hinze L, et al. RNAi-mediated Ultra-low gossypol cottonseed trait: performance of transgenic lines under field conditions. Plant Biotechnol J, 2013, 11: 296-304.
doi: 10.1111/pbi.12013 pmid: 23078138
[27] Rathore K S, Sundaram S, Sunilkumar G, Campbell L M, Puckhaber L, Marcel S, Palle S R, Stipanovic R D, Wedegaertner T C. Ultra-low gossypol cottonseed: generational stability of the seed-specific, RNAi-mediated phenotype and resumption of terpenoid profile following seed germination. Plant Biotechnol J, 2012, 10: 174-183.
doi: 10.1111/j.1467-7652.2011.00652.x pmid: 21902797
[28] Jiang S Y, Jin J J, Sarojam R, Ramachandran S. A comprehensive survey on the terpene synthase gene family provides new insight into its evolutionary patterns. Genome Biol Evol, 2019, 11: 2078-2098.
[29] Liu J Y, Huang F, Wang X, Zhang M, Zheng R, Wang J, Yu D Y. Genome-wide analysis of terpene synthases in soybean: functional characterization of GmTPS3. Gene, 2014, 544: 83-92.
[30] Degenhardt J, Köllner T G, Gershenzon J. Monoterpene and sesquiterpene synthases and the origin of terpene skeletal diversity in plants. Phytochemistry, 2009, 70: 1621-1637.
doi: 10.1016/j.phytochem.2009.07.030 pmid: 19793600
[31] Chen F, Tholl D, Bohlmann J, Pichersky E. The family of terpene synthases in plants: a mid-size family of genes for specialized metabolism that is highly diversified throughout the Kingdom. Plant J, 2011, 66: 212-229.
[32] Wen T Y, Xu X, Ren A P, Zhao G, Wu J H. Genome-wide identification of terpenoid synthase family genes in Gossypium hirsutum and functional dissection of its subfamily cadinene synthase A in gossypol synthesis. Front Plant Sci, 2023, 14: 1162237.
[33] Zhang C P, Liu X Y, Song Y, Sun Z R, Zhang J L, Wu H, Yang Y Z, Wang Z K, He D H. Comparative transcriptome analysis reveals genes associated with the gossypol synthesis and gland morphogenesis in Gossypium hirsutum. Genes, 2022, 13: 1452.
[34] Wang M J, Tu L L, Yuan D J, Zhu D, Shen C, Li J Y, Liu F Y, Pei L L, Wang P C, Zhao G N, et al. Reference genome sequences of two cultivated allotetraploid cottons, Gossypium hirsutum and Gossypium barbadense. Nat Genet, 2019, 51: 224-229.
[35] Wen X P, Chen Z W, Yang Z R, Wang M J, Jin S X, Wang G D, Zhang L, Wang L J, Li J Y, Saeed S, et al. A comprehensive overview of cotton genomics, biotechnology and molecular biological studies. Sci China Life Sci, 2023, 66: 2214-2256.
doi: 10.1007/s11427-022-2278-0 pmid: 36899210
[36] Li Y Q, Si Z F, Wang G P, Shi Z L, Chen J W, Qi G A, Jin S K, Han Z G, Gao W H, Tian Y, et al. Genomic insights into the genetic basis of cotton breeding in China. Mol Plant, 2023, 16: 662-677.
doi: 10.1016/j.molp.2023.01.012 pmid: 36738104
[37] Li J Y, Yuan D J, Wang P C, Wang Q Q, Sun M L, Liu Z P, Si H, Xu Z P, Ma Y Z, Zhang B Y, et al. Cotton pan-genome retrieves the lost sequences and genes during domestication and selection. Genome Biol, 2021, 22: 119.
doi: 10.1186/s13059-021-02351-w pmid: 33892774
[38] Huang J Q, Fang X, Tian X, Chen P, Lin J L, Guo X X, Li J X, Fan Z, Song W M, Chen F Y, et al. Aromatization of natural products by a specialized detoxification enzyme. Nat Chem Biol, 2020, 16: 250-256.
[39] Zhang J Y, Zhao T L, Sheng K, Sun Y, Han Y F, Chen Y R, Zhi Y E, Zhu S J, Chen J H. Root illumination promotes seedling growth and inhibits gossypol biosynthesis in upland cotton. Plants, 2022, 11: 728.
[40] Zang Y H, Xu C Y, Xuan L S, Ding L Y, Zhu J K, Si Z F, Zhang T Z, Hu Y. Identification and characteristics of a novel gland-forming gene in cotton. Plant J, 2021, 108: 781-792.
[41] Hu Y, Chen J D, Fang L, Zhang Z Y, Ma W, Niu Y C, Ju L Z, Deng J Q, Zhao T, Lian J M, et al. Gossypium barbadense and Gossypium hirsutum genomes provide insights into the origin and evolution of allotetraploid cotton. Nat Genet, 2019, 51: 739-748.
[42] 周利利. 利用CRISPR/Cas9创制低酚棉新种质及调控棉酚生物合成转录因子的研究. 中国农业科学院博士学位论文, 北京, 2023.
Zhou L L. Creating Low-Gossypol Cotton New Germplasm Via CRISPR/Cas9 and Study on Transcription Factors Regulating Gossypol Biosynthesis. PhD Dissertation of Chinese Academy of Agricultural Sciences, Beijing, China, 2023 (in Chinese with English abstract).
[43] 赵天伦. 陆地棉色素腺体形态建成与棉酚合成机理及全基因组解析. 浙江大学博士学位论文, 浙江杭州, 2019.
Zhao T L. Mechanisms of Pigment Glands Formation and Gossypol Biosynthesis and Their Genome-Wide Analysis in Upland Cotton. PhD Dissertation of Zhejiang University, Hangzhou, Zhejiang, China, 2019 (in Chinese with English abstract).
[44] 毛琼玲, 崔银仓, 陈国通, 韩飞, 郭伟, 张玉霞. HPLC法测定新疆棉籽中棉酚含量. 安徽农业科学, 2019, 47: 216-217.
Mao Q L, Cui Y C, Chen G T, Han F, Guo W, Zhang Y X. Determination of gossypol in cotton-seed of Xinjiang by HPLC. J Anhui Agric Sci, 2019, 47: 216-217 (in Chinese with English abstract).
[45] Joshi B, Singh S, Tiwari G J, Kumar H, Boopathi N M, Jaiswal S, Adhikari D, Kumar D, Sawant S V, Iquebal M A, et al. Genome-wide association study of fiber yield-related traits uncovers the novel genomic regions and candidate genes in Indian upland cotton (Gossypium hirsutum L.). Front Plant Sci, 2023, 14:1252746.
[46] Gennadios H A, Gonzalez V, Di Costanzo L, Li A M, Yu F L, Miller D J, Allemann R K, Christianson D W. Crystal structure of (+)-delta-cadinene synthase from Gossypium arboreum and evolutionary divergence of metal binding motifs for catalysis. Biochemistry, 2009, 48: 6175-6183.
doi: 10.1021/bi900483b pmid: 19489610
[47] Benedict C R, Alchanati I, Harvey P J, Liu J G, Stipanovic R D, Bell A A. The enzymatic formation of δ-cadinene from farnesyl diphosphate in extracts of cotton. Phytochemistry, 1995, 39: 327-331.
[48] Benedict C R, Lu J L, Pettigrew D W, Liu J, Stipanovic R D, Williams H J. The cyclization of farnesyl diphosphate and nerolidyl diphosphate by a purified recombinant delta-cadinene synthase. Plant Physiol, 2001, 125: 1754-1765.
doi: 10.1104/pp.125.4.1754 pmid: 11299356
[49] Sun Q, Cai Y F, Xie Y F, Mo J C, Yuan Y L, Shi Y Z, Li S W, Jiang H Z, Pan Z, Gao Y L, et al. Gene expression profiling during gland morphogenesis of a mutant and a glandless upland cotton. Mol Biol Rep, 2010, 37: 3319-3325.
doi: 10.1007/s11033-009-9918-3 pmid: 19888674
[50] Cheng H L, Lu C R, Yu J Z, Zou C S, Zhang Y P, Wang Q L, Huang J, Feng X X, Jiang P F, Yang W C, et al. Fine mapping and candidate gene analysis of the dominant glandless gene Gle2 in cotton (Gossypium spp.). Theor Appl Genet, 2016, 129: 1347-1355.
[51] Zhao T L, Xie Q W, Li C, Li C, Mei L, Yu J Z, Chen J H, Zhu S J. Cotton roots are the major source of gossypol biosynthesis and accumulation. BMC Plant Biol, 2020, 20: 88.
doi: 10.1186/s12870-020-2294-9 pmid: 32103722
[52] Ma Z Y, He S P, Wang X F, Sun J L, Zhang Y, Zhang G Y, Wu L Q, Li Z K, Liu Z H, Sun G F, et al. Resequencing a core collection of upland cotton identifies genomic variation and loci influencing fiber quality and yield. Nat Genet, 2018, 50: 803-813.
doi: 10.1038/s41588-018-0119-7 pmid: 29736016
[1] 王林, 陈晓雨, 张文梦龙, 汪思琦, 程冰云, 程靖秋, 潘锐, 张文英. 大麦HvMYB2分子特性及响应干旱胁迫的功能分析[J]. 作物学报, 2025, 51(4): 873-887.
[2] 张正康, 苏延红, 阮孙美, 张敏, 张攀, 张慧, 曾千春, 罗琼. 疣粒野生稻中OgXa13的克隆和功能研究[J]. 作物学报, 2025, 51(2): 334-346.
[3] 吴法轩, 李秦, 杨昕, 李新根, 徐建堂, 陶爱芬, 方平平, 祁建民, 张立武. 红麻HcKAN4基因克隆、表达及在类黄酮合成中的功能[J]. 作物学报, 2024, 50(3): 645-655.
[4] 王连南, 李远超, 余乃通, 麦伟涛, 李亚军, 陈新. MeTCP3a转录因子在木薯叶片发育中的功能鉴定[J]. 作物学报, 2024, 50(11): 2720-2730.
[5] 靖小菁, 杨新笋, 靳晓杰, 刘意, 雷剑, 王连军, 柴沙沙, 张文英, 焦春海. 甘薯蔓割病(Fusarium oxysporum f. sp. batatas)相关基因IbMAPKK9的克隆与特性分析[J]. 作物学报, 2023, 49(12): 3289-3301.
[6] 王穆穆, 何艳芳, 郑永胜, 王晖, 王丽媛, 王东建, 张晗, 李汝玉. 水稻落粒基因SH8的精细定位与克隆[J]. 作物学报, 2022, 48(8): 1948-1956.
[7] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[8] 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026.
[9] 梁曦彤, 高先原, 周琳, 穆春, 杜明伟, 李芳军, 田晓莉, 李召虎. 利用病毒诱导的基因沉默cDNA文库高通量筛选鉴定棉花功能基因[J]. 作物学报, 2022, 48(12): 2967-2977.
[10] 杨陆浩, 王立建, 孙广华, 王少瓷, 崔连花, 陈昌, 宋梅芳, 张艳培, 姜良良, 杨建平, 王晨阳. 栽培黑麦光敏色素PHYAPHYBPHYC基因转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(12): 3057-3070.
[11] 谢琴琴, 左同鸿, 胡燈科, 刘倩莹, 张以忠, 张贺翠, 曾文艺, 袁崇墨, 朱利泉. 甘蓝自交不亲和相关基因BoPUB9的克隆及表达分析[J]. 作物学报, 2022, 48(1): 108-120.
[12] 唐锐敏, 贾小云, 朱文娇, 印敬明, 杨清. 马铃薯热激转录因子HsfA3基因的克隆及其耐热性功能分析[J]. 作物学报, 2021, 47(4): 672-683.
[13] 岳洁茹, 白建芳, 张风廷, 郭丽萍, 苑少华, 李艳梅, 张胜全, 赵昌平, 张立平. 杂交小麦抗坏血酸过氧化物酶基因克隆及其在种子老化中的潜在功能分析[J]. 作物学报, 2021, 47(3): 405-415.
[14] 杨琴莉, 杨多凤, 丁林云, 赵汀, 张军, 梅欢, 黄楚珺, 高阳, 叶莉, 高梦涛, 严孙艺, 张天真, 胡艳. 棉花花器官突变体的鉴定及候选基因的克隆[J]. 作物学报, 2021, 47(10): 1854-1862.
[15] 何潇, 刘兴, 辛正琦, 谢海艳, 辛余凤, 吴能表. 半夏PtPAL基因的克隆、表达与酶动力学分析[J]. 作物学报, 2021, 47(10): 1941-1952.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!