作物学报 ›› 2025, Vol. 51 ›› Issue (10): 2619-2631.doi: 10.3724/SP.J.1006.2025.54020
赵海红1(), 李梦媛2, 刘锦婧2, 王园园3, 杜磊2, 王娟4, 董承光4,*(
), 李成奇2,*(
)
ZHAO Hai-Hong1(), LI Meng-Yuan2, LIU Jin-Jing2, WANG Yuan-Yuan3, DU Lei2, WANG Juan4, DONG Cheng-Guang4,*(
), LI Cheng-Qi2,*(
)
摘要:
株高是棉花重要的株型性状, 与棉花产量和机械化采收密切相关。本研究以340份陆地棉品种(系)为材料, 利用CottonSNP80K芯片和3VmrMLM方法对6个环境(5个单环境和1个多环境)的株高进行了全基因组关联分析, 鉴定QTN及QTN-环境互作(QEI)。基因分型获得47,959个多态性SNP标记, 这些标记将所有材料分为2个亚群。表型分析结果显示, 株高在各环境呈广泛连续变异, 基因型方差、环境方差及基因型-环境互作方差均达极显著水平。6个环境共检测到111个与株高相关的QTN, 其中TM66913 (D08)和TM79201 (D12) 2个稳定的QTN至少在3个环境中同时被检测到; 5个QTN与前人报道的QTL/标记位点重叠。对2个稳定的QTN附近基因的功能富集分析发现, 3个基因GH_D08G0118、GH_D08G0131和GH_D12G1786同时显著富集在GO和KEGG中, 其中GH_D08G0118在陆地棉TM-1的茎中有较高表达。本研究检测到8个QEI, 其中3个QEI为显著互作。对显著位点附近基因的功能富集分析发现, 涉及15个基因的GO条目和涉及2个基因的KEGG通路被显著富集, GH_D08G1507在TM-1的茎中有较高表达。利用3VmrMLM方法检测到许多小效应位点, 部分解决了复杂性状“遗传率丢失”问题。本研究检测到的QTN和QEI及其效应, 为深入解析陆地棉株高的遗传基础提供了新视角, 也为通过分子设计培育适宜株高的棉花品种提供了重要信息。
[1] |
Jeffrey Chen Z, Scheffler B E, Dennis E, Triplett B A, Zhang T Z, Guo W Z, Chen X Y, Stelly D M, Rabinowicz P D, Town C D, et al. Toward sequencing cotton (Gossypium) genomes. Plant Physiol, 2007, 145: 1303-1310.
doi: 10.1104/pp.107.107672 pmid: 18056866 |
[2] | Qi H K, Wang N, Qiao W Q, Xu Q H, Zhou H, Shi J B, Yan G T, Huang Q. Construction of a high-density genetic map using genotyping by sequencing (GBS) for quantitative trait loci (QTL) analysis of three plant morphological traits in upland cotton (Gossypium hirsutum L.). Euphytica, 2017, 213: 83. |
[3] |
董合忠, 张艳军, 张冬梅, 代建龙, 张旺锋. 基于集中收获的新型棉花群体结构. 中国农业科学, 2018, 51: 4615-4624.
doi: 10.3864/j.issn.0578-1752.2018.24.003 |
Dong H Z, Zhang Y J, Zhang D M, Dai J L, Zhang W F. New grouped harvesting-based population structures of cotton. Sci Agric Sin, 2018, 51: 4615-4624 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2018.24.003 |
|
[4] | Wang B H, Wu Y T, Huang N T, Zhu X F, Guo W Z, Zhang T Z. QTL mapping for plant architecture traits in upland cotton using RILs and SSR markers. J Genet Genomics, 2006, 33: 161-170. |
[5] |
王新坤, 潘兆娥, 孙君灵, 何守朴, 唐灿明, 杜雄明. 陆地棉矮秆突变体株高和纤维品质的QTL定位及相关性研究. 核农学报, 2011, 25: 448-455.
doi: 10.11869/hnxb.2011.03.0448 |
Wang X K, Pan Z E, Sun J L, He S P, Tang C M, Du X M. Correlation analysis and QTL mapping for plant height and fiber quality of dwarf mutant in upland cotton (Gossypium hirsutum L.). J Nucl Agric Sci, 2011, 25: 448-455 (in Chinese with English abstract). | |
[6] | Li C, Song L, Zhao H, Xia Z, Jia Z, Wang X, Dong N, Wang Q. Quantitative trait loci mapping for plant architecture traits across two upland cotton populations using SSR markers. J Agric Sci, 2014, 152: 275-287. |
[7] | Li C Q, Song L, Zhao H H, Wang Q L, Fu Y Z. Identification of quantitative trait loci with main and epistatic effects for plant architecture traits in Upland cotton (Gossypium hirsutum L.). Plant Breed, 2014, 133: 390-400. |
[8] |
何蕊, 石玉真, 张金凤, 梁燕, 张保才, 李俊文, 王涛, 龚举武, 刘爱英, 商海红, 等. 利用染色体片段代换系定位陆地棉株高QTL. 作物学报, 2014, 40: 457-465.
doi: 10.3724/SP.J.1006.2014.00457 |
He R, Shi Y Z, Zhang J F, Liang Y, Zhang B C, Li J W, Wang T, Gong J W, Liu A Y, Shang H H, et al. QTL mapping for plant height using chromosome segment substitution lines in upland cotton. Acta Agron Sin, 2014, 40: 457-465 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2014.00457 |
|
[9] | Shang L G, Liu F, Wang Y M, Abduweli A, Cai S H, Wang K B, Hua J P. Dynamic QTL mapping for plant height in Upland cotton (Gossypium hirsutum). Plant Breed, 2015, 134: 703-712. |
[10] | Jia X Y, Pang C Y, Wei H L, Wang H T, Ma Q F, Yang J L, Cheng S S, Su J J, Fan S L, Song M Z, et al. High-density linkage map construction and QTL analysis for earliness-related traits in Gossypium hirsutum L. BMC Genomics, 2016, 17: 909. |
[11] | Ma L L, Ijaz B, Wang Y M, Hua J P. Dynamic QTL analysis and validation for plant height using maternal and paternal backcrossing populations in Upland cotton. Euphytica, 2018, 214: 167. |
[12] | Ma J J, Pei W F, Ma Q F, Geng Y H, Liu G Y, Liu J, Cui Y P, Zhang X, Wu M, Li X L, et al. QTL analysis and candidate gene identification for plant height in cotton based on an interspecific backcross inbred line population of Gossypium hirsutum × Gossypium barbadense. Theor Appl Genet, 2019, 132: 2663-2676. |
[13] | Liu R X, Xiao X H, Gong J W, Li J W, Zhang Z, Liu A Y, Lu Q W, Shang H H, Shi Y Z, Ge Q, et al. QTL mapping for plant height and fruit branch number based on RIL population of upland cotton. J Cotton Res, 2020, 3: 5. |
[14] | Wu J, Mao L L, Tao J C, Wang X X, Zhang H J, Xin M, Shang Y Q, Zhang Y N, Zhang G H, Zhao Z T, et al. Dynamic quantitative trait loci mapping for plant height in recombinant inbred line population of upland cotton. Front Plant Sci, 2022, 13: 914140. |
[15] |
Li C, Huang L Y, Huang Y W, Kuang M, Wu Y Z, Ma Z Y, Fu X Q. Fine-mapping of a major QTL controlling plant height by BSA-seq and transcriptome sequencing in cotton. Theor Appl Genet, 2024, 137: 217.
doi: 10.1007/s00122-024-04714-w pmid: 39249496 |
[16] | Li C Q, Ai N J, Zhu Y J, Wang Y Q, Chen X D, Li F, Hu Q Y, Wang Q L. Association mapping and favourable allele exploration for plant architecture traits in upland cotton (Gossypium hirsutum L.) accessions. J Agric Sci, 2016, 154: 567-583. |
[17] |
Huang C, Nie X H, Shen C, You C Y, Li W, Zhao W X, Zhang X L, Lin Z X. Population structure and genetic basis of the agronomic traits of upland cotton in China revealed by a genome- wide association study using high-density SNPs. Plant Biotechnol J, 2017, 15: 1374-1386.
doi: 10.1111/pbi.12722 pmid: 28301713 |
[18] |
Su J J, Li L B, Zhang C, Wang C X, Gu L J, Wang H T, Wei H L, Liu Q B, Huang L, Yu S X. Genome-wide association study identified genetic variations and candidate genes for plant architecture component traits in Chinese upland cotton. Theor Appl Genet, 2018, 131: 1299-1314.
doi: 10.1007/s00122-018-3079-5 pmid: 29497767 |
[19] | Wen T W, Dai B S, Wang T, Liu X X, You C Y, Lin Z X. Genetic variations in plant architecture traits in cotton (Gossypium hirsutum) revealed by a genome-wide association study. Crop J, 2019, 7: 209-216. |
[20] | Ye Y L, Wang P L, Zhang M, Abbas M, Zhang J X, Liang C Z, Wang Y, Wei Y X, Meng Z G, Zhang R. UAV-based time-series phenotyping reveals the genetic basis of plant height in upland cotton. Plant J, 2023, 115: 937-951. |
[21] |
Cho S, Kim K, Kim Y J, Lee J K, Cho Y S, Lee J Y, Han B G, Kim H, Ott J, Park T. Joint identification of multiple genetic variants via elastic-net variable selection in a genome-wide association analysis. Ann Hum Genet, 2010, 74: 416-428.
doi: 10.1111/j.1469-1809.2010.00597.x pmid: 20642809 |
[22] |
Lippert C, Listgarten J, Liu Y, Kadie C M, Davidson R I, Heckerman D. FaST linear mixed models for genome-wide association studies. Nat Methods, 2011, 8: 833-835.
doi: 10.1038/nmeth.1681 pmid: 21892150 |
[23] |
Segura V, Vilhjálmsson B J, Platt A, Korte A, Seren Ü, Long Q, Nordborg M. An efficient multi-locus mixed-model approach for genome-wide association studies in structured populations. Nat Genet, 2012, 44: 825-830.
doi: 10.1038/ng.2314 pmid: 22706313 |
[24] | Zhou X, Carbonetto P, Stephens M. Polygenic modeling with Bayesian sparse linear mixed models. PLoS Genet, 2013, 9: e1003264. |
[25] | Wang S B, Feng J Y, Ren W L, Huang B, Zhou L, Wen Y J, Zhang J, Dunwell J M, Xu S Z, Zhang Y M. Improving power and accuracy of genome-wide association studies via a multi- locus mixed linear model methodology. Sci Rep, 2016, 6: 19444. |
[26] | Wen Y J, Zhang H W, Ni Y L, Huang B, Zhang J, Feng J Y, Wang S B, Dunwell J M, Zhang Y M, Wu R L. Methodological implementation of mixed linear models in multi-locus genome-wide association studies. Brief Bioinform, 2018, 19: 700-712. |
[27] |
Korte A, Vilhjálmsson B J, Segura V, Platt A, Long Q, Nordborg M. A mixed-model approach for genome-wide association studies of correlated traits in structured populations. Nat Genet, 2012, 44: 1066-1071.
doi: 10.1038/ng.2376 pmid: 22902788 |
[28] | Huang T, Hu F B. Gene-environment interactions and obesity: recent developments and future directions. BMC Med Genomics, 2015, 8: S2. |
[29] | Casale F P, Horta D, Rakitsch B, Stegle O. Joint genetic analysis using variant sets reveals polygenic gene-context interactions. PLoS Genet, 2017, 13: e1006693. |
[30] |
Robinson M R, English G, Moser G, Lloyd-Jones L R, Triplett M A, Zhu Z H, Nolte I M, van Vliet-Ostaptchouk J V, Snieder H, Study L C, et al. Genotype-covariate interaction effects and the heritability of adult body mass index. Nat Genet, 2017, 49: 1174-1181.
doi: 10.1038/ng.3912 pmid: 28692066 |
[31] |
Moore R, Casale F P, Bonder M J, Horta D, Consortium B I O S, Franke L, Barroso I, Stegle O. A linear mixed-model approach to study multivariate gene-environment interactions. Nat Genet, 2019, 51: 180-186.
doi: 10.1038/s41588-018-0271-0 pmid: 30478441 |
[32] | Li M, Zhang Y W, Zhang Z C, Xiang Y, Liu M H, Zhou Y H, Zuo J F, Zhang H Q, Chen Y, Zhang Y M. A compressed variance component mixed model for detecting QTNs and QTN-by- environment and QTN-by-QTN interactions in genome-wide association studies. Mol Plant, 2022, 15: 630-650. |
[33] | Cai C P, Zhu G Z, Zhang T Z, Guo W Z. High-density 80 K SNP array is a powerful tool for genotyping G. hirsutum accessions and genome analysis. BMC Genomics, 2017, 18: 654. |
[34] | Hubisz M J, Falush D, Stephens M, Pritchard J K. Inferring weak population structure with the assistance of sample group information. Mol Ecol Resour, 2009, 9: 1322-1332. |
[35] |
Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol, 2005, 14: 2611-2620.
doi: 10.1111/j.1365-294X.2005.02553.x pmid: 15969739 |
[36] | Li M, Zhang Y W, Xiang Y, Liu M H, Zhang Y M. IIIVmrMLM: The R and C++ tools associated with 3VmrMLM, a comprehensive GWAS method for dissecting quantitative traits. Mol Plant, 2022, 15: 1251-1253. |
[37] |
Li C Q, Wang Y Y, Ai N J, Li Y, Song J F. A genome-wide association study of early-maturation traits in upland cotton based on the CottonSNP80K array. J Integr Plant Biol, 2018, 60: 970-985.
doi: 10.1111/jipb.12673 |
[38] | Dong C G, Wang J, Yu Y, Ju L Z, Zhou X F, Ma X M, Mei G F, Han Z G, Si Z F, Li B C, et al. Identifying functional genes influencing Gossypium hirsutum fiber quality. Front Plant Sci, 2019, 9: 1968. |
[39] | Zhang T Z, Hu Y, Jiang W K, Fang L, Guan X Y, Chen J D, Zhang J B, Saski C A, Scheffler B E, Stelly D M, et al. Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nat Biotechnol, 2015, 33: 531-537. |
[40] | Hu Y, Chen J D, Fang L, Zhang Z Y, Ma W, Niu Y C, Ju L Z, Deng J Q, Zhao T, Lian J M, et al. Gossypium barbadense and Gossypium hirsutum genomes provide insights into the origin and evolution of allotetraploid cotton. Nat Genet, 2019, 51: 739-748. |
[41] | Lyu F Y, Han F R, Ge C L, Mao W K, Chen L, Hu H P, Chen G G, Lang Q L, Fang C. OmicStudio: a composable bioinformatics cloud platform with real-time feedback that can generate high-quality graphs for publication. Imeta, 2023, 2: e85. |
[42] | Tang D D, Chen M J, Huang X H, Zhang G C, Zeng L, Zhang G S, Wu S J, Wang Y W. SRplot: a free online platform for data visualization and graphing. PLoS One, 2023, 18: e0294236. |
[43] |
Lander E S, Botstein D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics, 1989, 121: 185-199.
doi: 10.1093/genetics/121.1.185 pmid: 2563713 |
[44] | Kao C H, Zeng Z B. Modeling epistasis of quantitative trait loci using Cockerham's model. Genetics, 2002, 160: 1243-1261. |
[45] | Li S S, Wang J K, Zhang L Y. Inclusive composite interval mapping of QTL by environment interactions in biparental populations. PLoS One, 2015, 10: e0132414. |
[46] | Zhao Q, Shi X S, Wang T, Chen Y, Yang R, Mi J M, Zhang Y W, Zhang Y M. Identification of QTNs, QTN-by-environment interactions, and their candidate genes for grain size traits in main crop and ratoon rice. Front Plant Sci, 2023, 14: 1119218. |
[47] | Wei N C, Zhang S Q, Liu Y, Wang J, Wu B B, Zhao J J, Qiao L, Zheng X W, Wang J L, Zheng J. Genome-wide association study of coleoptile length with Shanxi wheat. Front Plant Sci, 2022, 13: 1016551. |
[48] | Wen Y J, Wu X Y, Wang S M, Han L, Shen B L, Wang Y, Zhang J. Identification of QTN-by-environment interactions for yield related traits in maize under multiple abiotic stresses. Front Plant Sci, 2023, 14: 1050313. |
[49] | Han X, Tang Q Q, Xu L P, Guan Z L, Tu J X, Yi B, Liu K D, Yao X, Lu S P, Guo L. Genome-wide detection of genotype environment interactions for flowering time in Brassica napus. Front Plant Sci, 2022, 13: 1065766. |
[50] | Han Z M, Ke H F, Li X Y, Peng R X, Zhai D D, Xu Y, Wu L Q, Wang W S, Cui Y R. Detection of epistasis interaction loci for fiber quality-related trait via 3VmrMLM in upland cotton. Front Plant Sci, 2023, 14: 1250161. |
[51] | Li C Q, Pu Y N, Gao X, Cao Y, Bao Y Y, Xu Q L, Du L, Tan J R, Zhu Y H, Zhang H Y, et al. Detection of quantitative trait nucleotides (QTNs) and QTN-by-environment and QTN-by-QTN interactions for cotton early-maturity traits using the 3VmrMLM method. Ind Crops Prod, 2024, 216: 118706. |
[52] | Tian Z L, Chen B J, Li H G, Pei X X, Sun Y R, Sun G F, Pan Z E, Dai P H, Gao X, Geng X L, et al. Strigolactone-gibberellin crosstalk mediated by a distant silencer fine-tunes plant height in upland cotton. Mol Plant, 2024, 17: 1539-1557. |
[53] |
Li X, Wang Z, Sun S F, Dai Z R, Zhang J, Wang W B, Peng K, Geng W H, Xia S H, Liu Q C, et al. IbNIEL-mediated degradation of IbNAC087 regulates jasmonic acid-dependent salt and drought tolerance in sweet potato. J Integr Plant Biol, 2024, 66: 176-195.
doi: 10.1111/jipb.13612 |
[54] | Du C, Liu M, Yan Y J, Guo X Y, Cao X P, Jiao Y Z, Zheng J X, Ma Y C, Xie Y T, Li H B, et al. The U-box E3 ubiquitin ligase PUB35 negatively regulates ABA signaling through AFP1- mediated degradation of ABI5. Plant Cell, 2024, 36: 3277-3297. |
[55] | 刘利, 高东升. 植物中钼的吸收转运及钼辅因子与钼酶的研究进展. 植物生理学报, 2016, 52: 381-393. |
Liu L, Gao D S. Advances in molybdenum uptake and translocation, molybdenum cofactors and molybdenum enzymes in plants. Plant Physiol J, 2016, 52: 381-393 (in Chinese with English abstract). | |
[56] | Vadlamani G, Sukhoverkov K V, Haywood J, Breese K J, Fisher M F, Stubbs K A, Bond C S, Mylne J S. Crystal structure of Arabidopsis thaliana HPPK/DHPS, a bifunctional enzyme and target of the herbicide asulam. Plant Commun, 2022, 3: 100322. |
[57] | Navarrete O, Van Daele J, Stove C, Lambert W, Storozhenko S, Van Der Straeten D. Isolation and characterisation of an antifolate insensitive (afi1) mutant of Arabidopsis thaliana. Plant Biol, 2013, 15: 37-44. |
[58] | Zhang Y M, Zhang G, Xiao N, Wang L N, Fu Y P, Sun Z X, Fang R X, Chen X Y. The rice ‘nutrition response and root growth' (NRR) gene regulates heading date. Mol Plant, 2013, 6: 585-588. |
[59] |
Peleman J D, van der Voort J R. Breeding by design. Trends Plant Sci, 2003, 8: 330-334.
doi: 10.1016/S1360-1385(03)00134-1 pmid: 12878017 |
[60] | 万建民. 作物分子设计育种. 作物学报, 2006, 32: 455-462. |
Wan J M. Perspectives of molecular design breeding in crops. Acta Agron Sin, 2006, 32: 455-462 (in Chinese with English abstract). | |
[61] |
王建康, 李慧慧, 张学才, 尹长斌, 黎裕, 马有志, 李新海, 邱丽娟, 万建民. 中国作物分子设计育种. 作物学报, 2011, 37: 191-201.
doi: 10.3724/SP.J.1006.2011.00191 |
Wang J K, Li H H, Zhang X C, Yin C B, Li Y, Ma Y Z, Li X H, Qiu L J, Wan J M. Molecular design breeding in crops in China. Acta Agron Sin, 2011, 37: 191-201 (in Chinese with English abstract). | |
[62] |
Wang J K, Wan X Y, Li H H, Pfeiffer W H, Crouch J, Wan J M. Application of identified QTL-marker associations in rice quality improvement through a design-breeding approach. Theor Appl Genet, 2007, 115: 87-100.
doi: 10.1007/s00122-007-0545-x pmid: 17479243 |
[63] |
Zhang L Y, Li H H, Wang J K. Blib is a multi-module simulation platform for genetics studies and intelligent breeding. Commun Biol, 2022, 5: 1167.
doi: 10.1038/s42003-022-04151-9 pmid: 36323773 |
[64] |
Podlich D W, Cooper M. QU-GENE: a simulation platform for quantitative analysis of genetic models. Bioinformatics, 1998, 14: 632-653.
doi: 10.1093/bioinformatics/14.7.632 pmid: 9730929 |
[65] | Liu H M, Tessema B B, Jensen J, Cericola F, Andersen J R, Sørensen A C. ADAM-Plant: a software for stochastic simulations of plant breeding from molecular to phenotypic level and from simple selection to complex speed breeding programs. Front Plant Sci, 2019, 9: 1926. |
[66] | Chen C J, Garrick D, Fernando R, Karaman E, Stricker C, Keehan M, Cheng H. XSim version 2: simulation of modern breeding programs. G3: Genes Genomes Genetics, 2022, 12: jkac032. |
[67] |
Li H H, Zhang L Y, Gao S, Wang J K. Prediction by simulation in plant breeding. Crop J, 2025, 13: 501-509.
doi: 10.1016/j.cj.2024.12.018 |
[68] | Si Z F, Jin S K, Li J Y, Han Z G, Li Y Q, Wu X N, Ge Y X, Fang L, Zhang T Z, Hu Y. The design, validation, and utility of the “ZJU CottonSNP40K” liquid chip through genotyping by target sequencing. Ind Crops Prod, 2022, 188: 115629. |
[69] | Li C Q, Dong C G, Zhao H H, Wang J, Du L, Ai N J. Identification of superior parents with high fiber quality using molecular markers and phenotypes based on a core collection of upland cotton (Gossypium hirsutum L.). Mol Breed, 2022, 42: 30. |
[1] | 李宜谦, 徐守振, 刘萍, 马麒, 谢斌, 陈红. 基于40K SNP芯片的陆地棉产量构成因素全基因组关联分析及单铃重位点挖掘[J]. 作物学报, 2025, 51(8): 2128-2138. |
[2] | 薛晓菲, 戴云静, 李熙林, 丁艳艳, 王翔, 雷长英, 韩焕勇, 贺道华. 陆地棉杜松烯合酶基因GhCDN10的特征及其在棉酚合成中功能分析[J]. 作物学报, 2025, 51(8): 2060-2076. |
[3] | 闫喆林, 任强, 樊志龙, 殷文, 孙亚丽, 范虹, 何蔚, 胡发龙, 闫丽娟, 柴强. 氮肥后移优化绿洲灌区小麦间作玉米种间关系提高氮素利用效率[J]. 作物学报, 2025, 51(8): 2190-2203. |
[4] | 赵刚, 张建军, 党翼, 樊廷录, 王磊, 周刚, 王淑英, 李兴茂, 倪胜利, 米文博, 周旭姣, 程万莉, 李尚中. 黄土旱塬区秸秆覆盖量对不同降雨年型土壤水温效应和冬小麦产量的影响[J]. 作物学报, 2025, 51(6): 1643-1653. |
[5] | 凤舞剑, 冼晓青, 张新钵, 曹丹, 强承魁. 基于转录组和AlphaFold对稻瘟菌经典效应蛋白和水稻受体的快速鉴定[J]. 作物学报, 2025, 51(6): 1480-1488. |
[6] | 郭绪虎, 李灵芝, 李凤, 马博岩, 贾晓宇. I型MADS-box基因SlMADS79调控番茄株型的功能研究[J]. 作物学报, 2025, 51(4): 982-991. |
[7] | 徐建霞, 丁延庆, 曹宁, 程斌, 高旭, 李文贞, 张立异. 中国高粱株高和节间数全基因组关联分析及候选基因预测[J]. 作物学报, 2025, 51(3): 568-585. |
[8] | 郭淑慧, 潘转霞, 赵战胜, 杨六六, 皇甫张龙, 郭宝生, 胡晓丽, 录亚丹, 丁霄, 吴翠翠, 兰刚, 吕贝贝, 谭逢平, 李朋波. 陆地棉D11染色体一个纤维长度主效位点的遗传解析[J]. 作物学报, 2025, 51(2): 383-394. |
[9] | 黄林玉, 张潇月, 李豪, 邓梅, 康厚扬, 魏育明, 王际睿, 蒋云峰, 陈国跃. 小麦农家种成株期条锈病抗性QTL定位及其育种效应解析[J]. 作物学报, 2024, 50(9): 2167-2178. |
[10] | 郭春林, 林满红, 陈婷, 陈鸿飞, 林文芳, 林文雄. 根际微生物响应再生稻衰老的演变特征及其延效机制[J]. 作物学报, 2024, 50(8): 2039-2052. |
[11] | 李长喜, 董占鹏, 关永虎, 刘金伟, 李航, 梅拥军. 南疆陆地棉农艺性状与皮棉产量性状的遗传贡献及决策系数分析[J]. 作物学报, 2024, 50(6): 1486-1502. |
[12] | 刘薇, 王玉斌, 李伟, 张礼凤, 徐冉, 王彩洁, 张彦威. 过量表达大豆异丙基苹果酸脱氢酶基因GmIPMDH促进植株开花和生长[J]. 作物学报, 2024, 50(3): 613-622. |
[13] | 田春艳, 边芯, 郎荣斌, 俞华先, 桃联安, 安汝东, 董立华, 张钰, 经艳芬. 甘蔗3个育种性状与SSR标记的关联分析及优异等位变异发掘[J]. 作物学报, 2024, 50(2): 310-324. |
[14] | 刁现民, 王立伟, 智慧, 张俊, 李顺国, 程汝宏. 谷子中矮秆资源创制、遗传解析和育种利用[J]. 作物学报, 2024, 50(2): 265-279. |
[15] | 戎宇轩, 惠留洋, 王沛琦, 孙思敏, 张献龙, 袁道军, 杨细燕. 陆地棉CLE基因家族的鉴定及GhCLE13参与调控棉花抗旱性的功能分析[J]. 作物学报, 2024, 50(12): 2925-2939. |
|