欢迎访问作物学报,今天是

作物学报 ›› 2025, Vol. 51 ›› Issue (10): 2605-2618.doi: 10.3724/SP.J.1006.2025.53014

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

一种玉米穗腐病新病原棘孢木霉的分离与鉴定

肖森林1(), 阙凡2(), 周治寰2(), 张海霞1, 邢锦丰1, 朱祥彰2, 张彦冰2, 张楠2, 孙轩1, 王荣焕1, 宋伟1, 王维香2,*(), 赵久然1,*()   

  1. 1北京市农林科学院玉米研究所, 北京 100097
    2北京农学院植物科学技术学院, 北京 100096
  • 收稿日期:2025-02-27 接受日期:2025-07-09 出版日期:2025-10-12 网络出版日期:2025-07-28
  • 通讯作者: *王维香, E-mail: wangwei6455@sina.com;赵久然, E-mail: maizezhao@126.com
  • 作者简介:肖森林, E-mail: forestxiao@163.com;
    阙凡, E-mail: 13516440109@163.com;
    周治寰, E-mail: 15123596106@163.com
    **同等贡献
  • 基金资助:
    北京市农林科学院科技创新能力建设专项(KJCX20240332);国家自然科学基金项目(31871638)

Isolation and identification of a new pathogen Trichoderma asperellum causing ear rot in maize

XIAO Sen-Lin1(), QUE Fan2(), ZHOU Zhi-Huan2(), ZHANG Hai-Xia1, XING Jin-Feng1, ZHU Xiang-Zhang2, ZHANG Yan-Bing2, ZHANG Nan2, SUN Xuan1, WANG Rong-Huan1, SONG Wei1, WANG Wei-Xiang2,*(), ZHAO Jiu-Ran1,*()   

  1. 1Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
    2College of Plant Science and Technology, Beijing University of Agriculture, Beijing 100096, China
  • Received:2025-02-27 Accepted:2025-07-09 Published:2025-10-12 Published online:2025-07-28
  • Contact: *E-mail: wangwei6455@sina.com;E-mail: maizezhao@126.com
  • About author:First author contact:**Contributed equally to this work
  • Supported by:
    Special Project for Science and Technology Innovation Capacity Building of Beijing Academy of Agricultural and Forestry Sciences(KJCX20240332);National Natural Science Foundation of China(31871638)

摘要:

玉米穗腐病是造成玉米籽粒减产、品质变差的一种主要病害。该病是由一种或多种病原真菌复合侵染引起的病害, 其病原菌种类因环境和地域差异而复杂多样。以拟轮枝镰孢(Fusarium verticillioides)和禾谷镰孢(Fusarium graminearum)等为主的20个病原菌属种可侵染玉米, 引起穗腐病。近几年着生白色菌丝和青绿色分生孢子的穗腐病果穗频繁出现, 并且其发病率呈逐年上升趋势。然而, 这种青绿色穗腐病的致病菌尚未被明确鉴定。本研究通过形态学鉴定、rDNA-ITS测序序列分析、全基因组测序相结合的方法对分离到的病原菌进行鉴定。结果表明, 引起玉米青绿色穗腐病的致病菌为新病原菌棘孢木霉(Trichoderma asperellum)。利用WGA488染色方法, 观察到棘孢木霉的分生菌丝能够侵染玉米籽粒胚乳部位, 进一步证实了棘孢木霉对玉米穗腐病的致病性。选取代表性棘孢木霉菌株Tr.10, 采用果穗针刺注射法用分生孢子悬浮液接种419份玉米自交系, 进行致病性再测定。结果表明, Tr.10分生孢子可成功再侵染玉米不同自交系, 引起玉米棘孢木霉穗腐病。不同自交系对棘孢木霉穗腐病抗性存在显著差异。419份玉米自交系中, 高抗、抗病、中抗、感病和高感的自交系占比分别为6.8%、30.4%、30.7%、24.9%和7.1%。PHN47、F321、京2416K等25份自交系对棘孢木霉穗腐病表现高抗。本研究结果将为玉米穗腐病的抗性基因挖掘、优良品种选育推广提供重要参考。

关键词: 玉米穗腐病, 棘孢木霉, 致病性, 果穗针刺接种法, 抗性鉴定

Abstract:

Maize ear rot, caused by pathogenic fungi, significantly reduces both yield and grain quality. More than 20 pathogens have been reported to cause this disease, with F. verticillioides and F. graminearum being the most prevalent in China. In recent years, a distinct form of ear and grain rot, characterized by white hyphae and greenish-blue spores, has been frequently observed in various maize-growing regions across the country. However, the specific pathogen responsible for this type of ear rot had not been clearly identified. In this study, we identified the pathogen using a combination of morphological characterization, rDNA-ITS sequencing, and whole-genome sequencing. The results revealed that T. asperellum is the causative agent of maize greenish ear rot. A representative strain, Tr.10, was selected for pathogenicity re-evaluation by inoculating 419 maize inbred lines with a conidial suspension using ear needle-inoculation. The results confirmed that Tr.10 conidia successfully reinfected a wide range of inbred lines, inducing typical T. asperellum ear rot symptoms. Significant variation in disease resistance was observed across the tested lines. Among the 419 genotypes, 6.8% were classified as highly resistant, 30.4% as resistant, 30.7% as moderately resistant, 24.9% as susceptible, and 7.1% as highly susceptible. Notably, 25 inbred lines, including PHN47, F321, and Jing 2416K, exhibited high levels of resistance. These findings provide important insights into resistance mechanisms and offer a foundation for molecular breeding of Trichoderma ear rot-resistant maize cultivars.

Key words: maize ear rot, T. asperellum, pathogenesis, needle spike cob inoculation, resistance identification

图1

玉米穗腐病自然发病病圃发病样品图及玉米穗腐病自然发病病圃发病样品中病原菌DNA扩增检验图 A为分别采集来自北京、海南、河南、内蒙古、吉林、甘肃等地区9个市(县) 26个田间玉米穗腐病自然发病病穗样品; 图B为26个发病病穗样品DNA的通用引物ITS1和ITS4进行PCR扩增电泳凝胶图。"

表1

26个不同的地区玉米穗腐病发病样品致病菌鉴定表"

编号
Number
采样地点
Sampling location
鉴定菌种类别
Identification of fungal strain type
编号
Number
采样地点
Sampling location
鉴定菌种类别
Identification of fungal strain type
1 海南三亚Sanya, Hainan 棘孢木霉T. asperellum 14 甘肃张掖Zhangye, Gansu 哈茨木霉T. harzianum
2 北京怀柔Huairou, Beijing 哈茨木霉T. harzianum 15 甘肃张掖Zhangye, Gansu 哈茨木霉T. harzianum
3 北京怀柔Huairou, Beijing 哈茨木霉T. harzianum 16 甘肃张掖Zhangye, Gansu 哈茨木霉T. harzianum
4 北京怀柔Huairou, Beijing 哈茨木霉T. harzianum 17 甘肃张掖Zhangye, Gansu 哈茨木霉T. harzianum
5 北京怀柔Huairou, Beijing 哈茨木霉T. harzianum 18 河南荥阳Xingyang, Henan 棘孢木霉T. asperellum
6 北京怀柔Huairou, Beijing 哈茨木霉T. harzianum 19 河南荥阳Xingyang, Henan 棘孢木霉T. asperellum
7 北京怀柔Huairou, Beijing 哈茨木霉T. harzianum 20 河南荥阳Xingyang, Henan 棘孢木霉T. asperellum
8 北京通州Tongzhou, Beijing 棘孢木霉T. asperellum 21 河南郑州Zhengzhou, Henan 哈茨木霉T. harzianum
9 北京通州Tongzhou, Beijing 哈茨木霉T. harzianum 22 吉林四平Siping, Jilin 哈茨木霉T. harzianum
10 北京通州Tongzhou, Beijing 哈茨木霉T. harzianum 23 吉林四平Siping, Jilin 哈茨木霉T. harzianum
11 北京通州Tongzhou, Beijing 青霉Penicillium oxalicum 24 辽宁铁岭Tieling, Liaoning 棘孢木霉T. asperellum
12 北京通州Tongzhou, Beijing 青霉Penicillium oxalicum 25 辽宁铁岭Tieling, Liaoning 哈茨木霉T. harzianum
13
北京通州Tongzhou, Beijing
青霉Penicillium oxalicum
26
内蒙古赤峰
Chifeng, Inner Mongolia
哈茨木霉T. Harzianum

图2

棘孢木霉菌株Tr.10菌落形态及进化树分析 A~F分别为棘孢木霉菌在PDA培养基上1~6 d的生长情况; G、H分别为棘孢木霉菌在400×显微镜下的分生孢子梗和菌丝, 标尺为100 μm; I为棘孢木霉菌株Tr.10与其他真菌物种间的进化关系图。"

图3

棘孢木霉菌株Tr.10的全基因组图谱 由外到内, 圈分别代表基因组序列位置坐标、基因组GC含量、基因组GC skew值、编码基因基因密度、rRNA基因密度、snRNA基因密度和tRNA基因密度、染色体复制。基因组GC含量: 以窗口(基因组/1000) bp, 步长(基因组/1000) bp来统计GC含量, 向内的蓝色部分表示该区域GC含量低于全基因组平均GC含量, 向外的紫色部分与之相反, 且峰值越高表示与平均GC含量差值越大; 基因组GC skew值: 窗口(基因组/1000) bp, 步长(基因组/1000) bp, 具体算法为G-C/G+C, 向内的绿色部分表示该区域G的含量低于C的含量, 向外的粉色部分与之相反; 基因密度(以窗口基因组/1000 bp, 步长基因组/1000 bp分别统计编码基因、rRNA、snRNA tRNA的基因密度, 颜色越深, 代表窗口内的基因密度越大)、以及染色体duplication。"

图4

棘孢木霉与哈茨木霉和绿色木霉基因组的ANI分析 ANI: 平均核苷酸身份。ANI反映的是2个序列的距离, 图中不同颜色代表ANI值的高低; ANI值与颜色间的关系见右侧图例, 颜色越深代表样品间ANI值的越大。"

附表1

样本间ANI的值矩阵表格"

项目 Item Tr.10 Tr.a Tr.h Tr.v
Tr.10 100.00 93.34 76.22 68.19
Tr.a 93.14 100.00 76.00 68.62
Tr.h 75.53 75.68 100.00 68.57
Tr.v 69.24 69.17 68.96 100.00

图5

Tr.10与棘孢木霉和哈茨木霉的基因比较图 A为Tr.10与棘孢木霉基因组的共线性分析图; B为Tr.10与哈茨木霉基因组的共线性分析图。"

图6

棘孢木霉侵染玉米籽粒的荧光显微镜观察图及棘孢木霉大田接种侵染玉米自交系发病图 A和B: 荧光显微镜下使用WGA488染色的玉米籽粒病理切片, 绿色荧光为侵染进玉米籽粒的菌丝; C、E、G分别为在Tr.10棘孢木霉菌接种侵染下, 呈现高抗表型的PHN47、鲁原92、哲376的玉米样品; D、F、H分别为在Tr.10棘孢木霉菌接种侵染下, 呈现高感表型的丹340、郑58、PHT77的玉米样品。"

附表2

419份玉米自交系抗棘孢木霉穗腐病鉴定表"

名称
Inbred line
发病等级
Disease grade
抗性
Resistance
名称
Inbred line
发病等级
Disease grade
抗性
Resistance
名称
Inbred line
发病等级
Disease grade
抗性
Resistance
鲁原92
Luyuan 92
1.00 高抗HR 廊玉1 Langyu 1 3.30 抗R 4676A 5.40 中抗MR
PHN47 1.00 高抗HR PHKE6 3.33 抗R MZ789 5.44 中抗MR
F321 1.00 高抗HR MZ343 3.40 抗R D82 5.44 中抗MR
F304 1.00 高抗HR 207=PH20 3.40 抗R 原辐黄
Yuanfuhuang
5.44 中抗MR
哲376 Zhe 376 1.00 高抗HR W9706 3.40 抗R 428 5.50 感S
Xin 23 1.00 高抗HR 垦自167-1
Kenzi 167-1
3.40 抗R PHBW8 5.55 感S
金143 Jin 143 1.20 高抗HR 龙系53 Longxi 53 3.40 抗R D9H 5.57 感S
LH156 1.20 高抗HR S07:61 3.44 抗R F404 5.60 感S
244 1.20 高抗HR 罗4 Luo 4 3.44 抗R 2369 5.60 感S
SW1611 1.22 高抗HR SG17 3.44 抗R 库6-49
Ku 6-49
5.60 感S
直32 Zhi 32 1.40 高抗HR Q126 3.44 抗R 京2417
Jing 2417
5.60 感S
M03 1.40 高抗HR K334 3.50 抗R G108 5.60 感S
JN15 1.40 高抗HR KW4M029 3.50 抗R 掖502 Ye 502 5.60 感S
抗病F349
Kangbing F349
1.40 高抗HR KWS49 3.50 抗R PHW79 5.67 感S
5831 1.44 高抗HR BD13 2576 3.60 中抗MR RS710 5.67 感S
L135 1.44 高抗HR C8605 3.60 中抗MR N127 5.67 感S
Mo17 1.44 高抗HR PHG39 3.60 中抗MR 京21-6
Jing 21-6
5.67 感S
京4380
Jing 4380
1.50 高抗HR 哲461 Zhe 461 3.60 中抗MR IB014 5.70 感S
大M0 Da M0 1.50 高抗HR PHG83 3.60 中抗MR LH52 5.70 感S
V022 1.55 高抗HR G80 3.60 中抗MR PHW52 5.80 感S
MC30 1.57 高抗HR 中128 Zhong 128 3.67 中抗MR P131B 5.89 感S
丹598 Dan 598 1.60 高抗HR 黄C Huang C 3.67 中抗MR PHHH9 5.89 感S
京2416
Jing 2416
1.60 高抗HR Q381 3.70 中抗MR 掖478 Ye 478 5.89 感S
X178 1.60 高抗HR 京92H Jing 92H 3.75 中抗MR B73 5.89 感S
PHG84 1.61 高抗HR PHR32 3.75 中抗MR 甘41 Gan 41 5.89 感S
K4104-16 1.67 抗R OQ603 3.75 中抗MR 京02 Jing 02 5.90 感S
浚926 Xun 926 1.67 抗R 赤L015 Chi L015 3.80 中抗MR PHG71 5.90 感S
齐318 Qi 318 1.67 抗R CN1483 3.80 中抗MR 京系108
Jingxi 108
6.00 感S
P138 1.67 抗R 大19 Da 19 3.80 中抗MR CA335 6.00 感S
海9-21 Hai 9-21 1.72 抗R HPHR47 3.80 中抗MR PHT60 6.09 感S
MC0304 1.73 抗R PHG29 3.80 中抗MR W8304 6.10 感S
8902 1.73 抗R 740 3.80 中抗MR LH61 6.10 感S
IBC2 1.75 抗R F429 3.80 中抗MR PHG35orG35 6.10 感S
LH146HT 1.77 抗R PHN82 3.85 中抗MR 哲391 Zhe 391 6.10 感S
1145 1.80 抗R 泰039 Tai 039 3.89 中抗MR 冀58 Ji 58 6.11 感S
黄85B
Huang 85B
1.80 抗R 中106 Zhong 106 3.89 中抗MR 直25 Zhi 25 6.11 感S
PHR31 1.80 抗R PI 406124 4.00 中抗MR F399 6.20 感S
420 1.89 抗R 沈农92-67
Shennong 92-67
4.00 中抗MR PHZ51 6.20 感S
PHJ22 1.89 抗R 通系(85-2)
Tongxi (85-2)
4.00 中抗MR 直100 Zhi 100 6.20 感S
京725 Jing 725 1.89 抗R U8112 4.00 中抗MR LH65 6.20 感S
JG17 1.89 抗R ZMA22 4.00 中抗MR 91黄10
91 Huang 10
6.20 感S
邢K36
Xing K36
1.90 抗R 220 4.00 中抗MR DH351 6.20 感S
H7 1.90 抗R LH119 4.00 中抗MR PHP02 6.20 感S
中85 Zhong 58 1.90 抗R PHk74 4.00 中抗MR H78 6.25 感S
B09 1.90 抗R BA 4.09 中抗MR MC01 6.27 感S
5237 2.00 抗R 京464 Jing 464 4.09 中抗MR SK1098 6.30 感S
614红轴
614 Hongzhou
2.00 抗R 572 4.10 中抗MR ML606 6.30 感S
9010 2.00 抗R 冀53 Ji 53 4.11 中抗MR PHPR5 6.30 感S
龙抗11
Longkang 11
2.00 抗R H21 4.11 中抗MR 农系110
Nongxi 110
6.33 感S
P9-10 2.00 抗R 丹341 Dan 341 4.11 中抗MR 齐406 Qi 406 6.40 感S
IBB14 2.09 抗R DJ7 4.17 中抗MR MBNA 6.40 感S
F101F 2.10 抗R LH132 4.20 中抗MR LH60 6.40 感S
G476 2.11 抗R 9058 4.20 中抗MR LH149 6.40 感S
黄野四
Huangyesi
2.11 抗R DH
(KWS10.KWS73)
4.20 中抗MR 9503 6.45 感S
遵0204 Zun 0204 2.14 抗R JG06 4.20 中抗MR 齐404 Qi 404 6.45 感S
LH150 2.14 抗R 593 4.25 中抗MR C-50 6.50 感S
中黄69
Zhonghuang 69
2.20 抗R S8324 4.25 中抗MR 旅28 Lyu 28 6.55 感S
LH74 2.20 抗R PHRZS 4.27 中抗MR PB80 6.60 感S
LH1 2.20 抗R F518 4.30 中抗MR LH93 6.67 感S
75-364 2.20 抗R K10 4.30 中抗MR 沈219
Shen 219
6.71 感S
PHG72 2.20 抗R CN4379 4.33 中抗MR 长3 Chang 3 6.80 感S
LX9801 2.25 抗R 辽613 Liao 613 4.33 中抗MR PHT55 6.80 感S
K454 2.25 抗R 丹9046 Dan 9046 4.40 中抗MR PHM49 6.80 感S
中134 Zhong 134 2.25 抗R S122 4.43 中抗MR 8001 7.00 感S
H18 2.25 抗R 中5493
Zhong 5493
4.50 中抗MR PHT10 7.00 感S
PHN11 2.29 抗R PI 406119 4.50 中抗MR Oh43 7.00 感S
PHH93 2.30 抗R 78004 4.50 中抗MR 6F576 7.00 感S
PHG42 2.30 抗R 京92 Jing 92 4.56 中抗MR 4N506 7.00 感S
直29 Zhi 29 2.33 抗R MBPM 4.56 中抗MR PHG86 7.00 感S
涿99 Zhuo 99 2.33 抗R KW5G321 4.60 中抗MR Ames 19314 7.00 感S
四-287 Si-287 2.33 抗R 利维9 Liwei 9 4.60 中抗MR 中451
Zhong 451
7.00 感S
YF121 2.40 抗R E28 4.60 中抗MR 京186 Jing 186 7.00 感S
豫87-1 Yu 87-1 2.40 抗R 543 4.60 中抗MR KW7M091 7.00 感S
早709 Zao 709 2.43 抗R 京24 Jing 24 4.60 中抗MR MZ031 7.00 感S
6M502 2.45 抗R 西502 Xi 502 4.60 中抗MR M5972 7.00 感S
PI 539921 2.45 抗R 11430 4.60 中抗MR PI 587142 7.00 感S
吉856 Ji 856 2.50 抗R 段007 Duan 007 4.70 中抗MR LH59 7.00 感S
JH3372 2.50 抗R IBO14 4.70 中抗MR 790 7.20 感S
原黄81
Yuanhuang 81
2.50 抗R D9046 4.71 中抗MR HCL645 7.20 感S
皖系47 Wanxi 47 2.55 抗R D9B 4.75 中抗MR K14 7.20 感S
831 2.56 抗R B84 4.78 中抗MR 掖515 Ye 515 7.20 感S
9F592 2.57 抗R 764 4.78 中抗MR 87916W 7.20 感S
京594 Jing 594 2.60 抗R HB1-1 4.78 中抗MR DK653M 7.20 感S
PH4CV 2.60 抗R HD586 4.78 中抗MR W8555 7.25 感S
黄331
Huang 331
2.60 抗R 本7884-7
Ben 7884-7
4.78 中抗MR L139 7.25 感S
矮68 Ai 68 2.60 抗R 铁7922 Tie 7922 4.80 中抗MR LH38 7.40 感S
京MC08
Jing MC08
2.64 抗R 京X005
Jing X005
4.80 中抗MR SB326 7.40 感S
Ames 10261 2.67 抗R 苏80-1 Su 80-1 4.80 中抗MR PHW43 7.40 感S
齐319 Qi 319 2.78 抗R 吉1037 Ji 1037 4.80 中抗MR P12 7.40 感S
787 2.78 抗R 78371A 5.00 中抗MR 综3 Zong 3 7.40 感S
京724 Jing 724 2.78 抗R 综31 Zong 31 5.00 中抗MR 京388 Jing 388 7.44 感S
M54 2.78 抗R 甸骨11 Diangu 11 5.00 中抗MR LS02 7.44 感S
PHGW7 2.78 抗R 获唐黄
Huotanghuang
5.00 中抗MR J2451 7.50 感S
F398 2.80 抗R 851 5.00 中抗MR P25 7.50 感S
合344 He 344 2.80 抗R K12 5.00 中抗MR W22 7.50 感S
PI 587155 2.80 抗R A801 5.00 中抗MR B334 7.55 高感HS
G433 2.80 抗R 皖系19 Wanxi 19 5.00 中抗MR DH382 7.60 高感HS
KW1A139 2.80 抗R D047 5.00 中抗MR 连87 Lian 87 7.67 高感HS
FAPW 2.80 抗R G35=PHG 5.00 中抗MR H8431 7.80 高感HS
京2418-1
Jing 2418-1
2.80 抗R PH6WC 5.00 中抗MR H130024 7.86 高感HS
G172 3.00 抗R 52106 5.00 中抗MR 吉853 Ji 853 7.90 高感HS
9502 3.00 抗R SK516 5.00 中抗MR 792 8.00 高感HS
沈137 Shen 137 3.00 抗R 维尔44 Wei'er 44 5.00 中抗MR 获白 Huobai 8.10 高感HS
中71 Zhong 71 3.00 抗R 47B47=PHB4 5.14 中抗MR 太113-1
Tai 113-1
8.10 高感HS
吉846 Ji 846 3.00 抗R 1024 5.18 中抗MR 四自四 Sizisi 8.11 高感HS
京27 Jing 27 3.00 抗R 444 5.18 中抗MR PHW65 8.11 高感HS
B547 3.00 抗R Y1518 5.20 中抗MR 百黄混
Baihuanghun
8.14 高感HS
78010 3.00 抗R 叶多白 Yeduobai 5.20 中抗MR PHK29 8.20 高感HS
农系531
Nongxi 531
3.00 抗R PHK76 5.20 中抗MR 丹340
Dan 340
8.25 高感HS
多25 Duo 25 3.00 抗R PHN29 5.20 中抗MR 郑58 Zheng 58 8.33 高感HS
C8605-2 3.00 抗R PHT22 5.20 中抗MR 236 8.60 高感HS
PHG50 3.00 抗R F307 5.22 中抗MR B14 8.60 高感HS
武312 Wu 312 3.00 抗R 多毛3 Duomao 3 5.22 中抗MR 黄早四
Huangzaosi
8.60 高感HS
丰5 Feng 5 3.00 抗R 京9218 Jing 9218 5.22 中抗MR PHT77 8.60 高感HS
PI 594047 3.00 抗R B234 5.25 中抗MR LH57 8.70 高感HS
齐410 Qi 410 3.20 抗R PHVA9 5.25 中抗MR PHG47 8.70 高感HS
NQ508 3.20 抗R MBST 5.40 中抗MR LH39 8.80 高感HS
中16 Zhong 16 3.22 抗R LH190 5.40 中抗MR E8501 8.80 高感HS
DH65232 3.25 抗R 京318 Jing 318 5.40 中抗MR NS701 9.00 高感HS
衡特 Hengte 3.25 抗R 501 5.40 中抗MR CML325 9.00 高感HS
4F1 3.25 抗R NS501 5.40 中抗MR F101M 9.00 高感HS
北711 Bei 711 3.30 抗R 3189 5.40 中抗MR
[1] 李小平, 董怀玉, 陶烨, 姜钰, 王丽娟, 刘旸, 刘延军. 玉米穗粒腐病研究概况. 杂粮作物, 2007, 27(2): 130-132.
Li X P, Dong H Y, Tao Y, Jiang Y, Wang L J, Liu Y, Liu Y J. General situation of corn ear rot research. Rain Fed Crops, 2007, 27(2): 130-132 (in Chinese).
[2] 张帆, 万雪琴, 潘光堂. 玉米抗穗粒腐病QTL定位. 作物学报, 2007, 33: 491-496.
Zhang F, Wan X Q, Pan G T. Molecular mapping of QTL for resistance to maize ear rot caused by Fusarium moniliforme. Acta Agron Sin, 2007, 33: 491-496 (in Chinese with English abstract).
[3] 张帆, 万雪琴, 潘光堂. 玉米穗粒腐病研究进展及分子标记辅助选择策略. 分子植物育种, 2004, 2: 122-126.
Zhang F, Wan X Q, Pan G T. Advances on research of maize ear rot and strategies for its QTL mapping and marker-assisted selection (MAS). Mol Plant Breed, 2004, 2: 122-126 (in Chinese with English abstract).
[4] 张海剑, 索相敏. 河北省玉米穗腐病的发生情况及防治建议. 现代农村科技, 2016, (10): 23.
Zhang H J, Suo X M. Occurrence and control suggestions of maize ear rot in Hebei Province. Xiandai Nongcun Keji, 2016, (10): 23 (in Chinese).
[5] Balconi C, Berardo N, Locatelli S, Lanzanova C, Torri A, Redaelli R. Evaluation of ear rot (Fusarium verticillioides) resistance and fumonisin accumulation in Italian maize inbred lines. Phytopathol Mediterr, 2014, 53: 14-26.
[6] Jiang B W, Wang D Y, Zhou J, Cai J, Jiang J J, Wang L X, Li Y G. First report of corn ear rot caused by Fusarium asiaticum in China. Plant Dis, 2022, 107: 1243.
[7] Cao Y Y, Ma J, Han S B, Hou M W, Wei X, Zhang X R, Zhang Z J, Sun S L, Ku L X, Tang J H, et al. Single-cell RNA sequencing profiles reveal cell type-specific transcriptional regulation networks conditioning fungal invasion in maize roots. Plant Biotechnol J, 2023, 21: 1839-1859.
doi: 10.1111/pbi.14097 pmid: 37349934
[8] Zhu M, Zhong T, Xu L, Guo C Y, Zhang X H, Liu Y L, Zhang Y, Li Y C, Xie Z J, Liu T T, et al. The ZmCPK39-ZmDi19-ZmPR10 immune module regulates quantitative resistance to multiple foliar diseases in maize. Nat Genet, 2024, 56: 2815-2826.
doi: 10.1038/s41588-024-01968-4 pmid: 39496881
[9] Scott G E. Site of action of factors for resistance to Fusarium moniliforme in maize. Plant Dis, 1984, 68: 804.
[10] Giomi G M, Kreff E D, Iglesias J, Fauguel C M, Fernandez M, Oviedo M S, Presello D A. Quantitative trait loci for Fusarium and Gibberella ear rot resistance in Argentinian maize germplasm. Euphytica, 2016, 211: 287-294.
[11] Wen J, Shen Y Q, Xing Y X, Wang Z Y, Han S P, Li S J, Yang C M, Hao D Y, Zhang Y. QTL mapping of Fusarium ear rot resistance in maize. Plant Dis, 2021, 105: 558-565.
[12] Shang G F, Yu H, Yang J, Zeng Z, Hu Z Q. First report of Fusarium miscanthi causing ear rot on maize in China. Plant Dis, 2021, 105: 1565.
[13] Sanna M, Pugliese M, Gullino M L, Mezzalama M. First report of Trichoderma afroharzianum causing seed rot on maize in Italy. Plant Dis, 2022, 106: 1982.
[14] Chavéz-Díaz I F, Cruz-Cárdenas C I, Sandoval-Cancino G, Calvillo-Aguilar F F, Ruíz-Ramírez S, Blanco-Camarillo M, Rojas- Anaya E, Ramírez-Vega H, Arteaga-Garibay R I, Zelaya-Molina L X. Seedling growth promotion and potential biocontrol against phytopathogenic Fusarium by native rhizospheric Pseudomonas spp. strains from Amarillo Zamorano maize Landrace. Rhizosphere, 2022, 24: 100601.
[15] Ma P P, Liu E P, Zhang Z R, Li T, Zhou Z J, Yao W, Chen J F, Wu J Y, Xu Y F, Zhang H Y.Genetic variation in ZmWAX2 confers maize resistance to Fusarium verticillioides. Plant Biotechnol J, 2023, 21: 1812-1826.
[16] 贾娇, 隋晶, 张伟, 孟玲敏, 白雪, 吴宏斌, 王义生, 张玉榕, 苏前富. 玉米禾谷镰孢穗腐病抗性鉴定接种方法比较. 玉米科学, 2022, 30(5): 149-155.
Jia J, Sui J, Zhang W, Meng L M, Bai X, Wu H B, Wang Y S, Zhang Y R, Su Q F. Comparison of two inoculation methods for resistance of Fusarium graminearum ear rot. J Maize Sci, 2022, 30(5): 149-155 (in Chinese with English abstract).
[17] 魏景超. 真菌鉴定手册. 上海: 上海科学技术出版社, 1979.
Wei J C. Handbook of Fungal Identification. Shanghai: Shanghai Scientific & Technical Publishers, 1979 (in Chinese).
[18] 薛德星, 李美, 高兴祥, 李健. 生防菌棘孢木霉的分离鉴定及生物学特性研究. 山东农业科学, 2023, 55(10): 118-123.
Xue D X, Li M, Gao X X, Li J.Isolation, identification and biological characteristics of Trichoderma asperellum GT30. Shandong Agric Sci, 2023, 55(10): 118-123 (in Chinese with English abstract).
[19] 张成, 廖文敏, 薛鸣, 陈迪, 侯巨梅, 刘铜. 棘孢木霉DQ-1分生孢子固体发酵优化及其对4种作物幼苗生长的影响. 中国生物防治学报, 2021, 37: 315-322.
doi: 10.16409/j.cnki.2095-039x.2021.02.002
Zhang C, Liao W M, Xue M, Chen D, Hou J M, Liu T. Optimization of solid substrate and conditions of Trichoderma asperellum DQ-1 and effect on four crop seedlings growth. Chin J Biol Control, 2021, 37: 315-322 (in Chinese with English abstract).
[20] 孙丽丽, 曹传旺, 薛绪亭, 王志英, 杜春艳. 棘孢木霉可湿性粉剂研制及杀菌活性测定. 北京林业大学学报, 2015, 37(6): 45-52.
Sun L L, Cao C W, Xue X T, Wang Z Y, Du C Y. Preparation and fungicidal bioactivity of wettable powder formulations of Trichoderma asperellum. J Beijing For Univ, 2015, 37(6): 45-52 (in Chinese with English abstract).
[21] 邹佳迅, 范晓旭, 宋福强. 木霉(Trichoderma spp.)对植物土传病害生防机制的研究进展. 大豆科学, 2017, 36: 970-977.
Zou J X, Fan X X, Song F Q. Biocontrol mechanism of Trichoderma spp. against soilborn plant disease. Soybean Sci, 2017, 36: 970-977 (in Chinese with English abstract).
[22] Verma M, Brar S K, Tyagi R D, Surampalli R Y, Valéro J R. Antagonistic fungi, Trichoderma spp. panoply of biological control. Biochem Eng J, 2007, 37: 1-20.
[23] Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones S J, Marra M A. Circos: an information aesthetic for comparative genomics. Genome Res, 2009, 19: 1639-1645.
doi: 10.1101/gr.092759.109 pmid: 19541911
[24] Saha S, Bridges S, Magbanua Z V, Peterson D G. Empirical comparison of ab initio repeat finding programs. Nucleic Acids Res, 2008, 36: 2284-2294.
[25] Benson G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res, 1999, 27: 573-580.
doi: 10.1093/nar/27.2.573 pmid: 9862982
[26] 方中达. 植病研究方法. 第3版. 北京: 中国农业出版社, 1998.
Fang Z D. Research Methods of Plant Diseases, 3rd edn. Beijing: China Agriculture Press, 1998 (in Chinese).
[27] 李洪连, 张新, 袁红霞, 李健强. 玉米杂交种穗粒腐病原鉴定. 植物保护学报, 1999, 26: 305-308.
Li H L, Zhang X, Yuan H X, Li J Q. Identification of pathogens causing ear and seed rot in corn hybrids. J Plant Prot, 1999, 26: 305-308 (in Chinese with English abstract).
[28] 张小飞, 邹成佳, 崔丽娜, 李晓, 杨晓蓉, 罗怀海. 西南地区玉米穗腐病病原分离鉴定及接种方法研究. 西南农业学报, 2012, 25: 2078-2082.
Zhang X F, Zou C J, Cui L N, Li X, Yang X R, Luo H H. Identification of pathogen causing maize ear rot and inoculation technique in Southwest China. Southwest China J Agric Sci, 2012, 25: 2078-2082 (in Chinese with English abstract).
[29] Li Y M, Tao X B, Yao L S, Tang S, Zhang X H, Tong L X, Liu Q L, Song T, Zhang D F, Cao Y Y, et al. qRfv2, a quantitative resistance locus against Fusarium ear rot in maize. Crop J, 2025, 13: 41-50.
[30] 李生杰. 浅析玉米病虫害防治. 农家科技, 2019, 9(2): 111.
Li S J. Analysis on the prevention and control of corn diseases and pests. Nongjia Keji, 2019, 9(2): 111 . (in Chinese)
[31] 王兴娥, 赵永田, 刘荣, 刘善灵, 方双燕, 韩昕, 唐贵福, 刘恋. 木霉菌防治植物真菌病害的研究进展. 植物医学, 2024, 3(4): 11-19.
Wang X E, Zhao Y T, Liu R, Liu S L, Fang S Y, Han X, Tang G F, Liu L. Research progress on prevention and control of plant fungal diseases with Trichoderma. Plant Health Med, 2024, 3(4): 11-19 (in Chinese with English abstract).
[32] 那明慧, 赵睿杰, 陈晓旭, 王作英, 高增贵. 玉米木霉穗腐病接种方法及玉米新品种的抗性分析. 玉米科学, 2024, 32(2): 162-167.
Na M H, Zhao R J, Chen X X, Wang Z Y, Gao Z G. Analysis of the inoculation method of Trichoderma ear rot and the resistance of new maize varieties. J Maize Sci, 2024, 32(2): 162-167 (in Chinese with English abstract).
[1] 马骏, 陈锋, 殷贵鸿, 胡海燕, 魏学宁, 解超杰, 孔令让. 小麦抗茎基腐病遗传育种研究的现状与展望[J]. 作物学报, 2025, 51(10): 2559-2569.
[2] 叶靓, 朱叶琳, 裴琳婧, 张思颖, 左雪倩, 李正真, 刘芳, 谭静. 联合全基因组关联和转录组分析筛选玉米拟轮枝镰孢穗腐病的抗性候选基因[J]. 作物学报, 2024, 50(9): 2279-2296.
[3] 杨昕, 林文忠, 陈思远, 杜振国, 林杰, 祁建民, 方平平, 陶爱芬, 张立武. 黄麻双生病毒CoYVV的分子鉴定和抗性种质筛选[J]. 作物学报, 2022, 48(3): 624-634.
[4] 左香君, 房朋朋, 李加纳, 钱伟, 梅家琴. 有毛野生甘蓝(Brassica incana)抗蚜虫特性研究[J]. 作物学报, 2021, 47(6): 1109-1113.
[5] 杨洋,陈国康,郭成,张炜,孙素丽,王晓鸣,朱振东,段灿星. 玉米种质资源抗腐霉茎腐病鉴定[J]. 作物学报, 2018, 44(8): 1256-1260.
[6] 马军韬,张国民,辛爱华,张丽艳,邓凌韦,王永力,王英,任洋,宫秀杰,葛选良,杨秀峰. 不同遗传背景下稻瘟病菌致病性对比分析[J]. 作物学报, 2015, 41(12): 1791-1801.
[7] 曹廷杰,陈永兴,李丹,张艳,王西成,赵虹,刘志勇. 河南小麦新育成品种(系)白粉病抗性鉴定与分子标记检测[J]. 作物学报, 2015, 41(08): 1172-1182.
[8] 邢小萍,杨静,袁虹霞,张佳佳,李洪连*,刘文轩*. 普通小麦-卵穗山羊草种质的菲利普孢囊线虫抗性[J]. 作物学报, 2014, 40(11): 1956-1963.
[9] 王宝祥,胡金龙,孙志广,宋兆强,卢百关,周振玲,樊继伟,秦德荣,刘裕强,江玲,徐大勇,万建民. 水稻黑条矮缩病抗性评价方法及抗性资源筛选[J]. 作物学报, 2014, 40(09): 1521-1530.
[10] 韩粉霞,韩广振,孙君明,张金巍,于绍轩,闫淑荣,杨华. 44份大豆微核心种质抗菌核病鉴定与评价[J]. 作物学报, 2013, 39(10): 1783-1790.
[11] 陈明丽, 王兰芬, 王晓鸣, 张晓艳, 王述民. 利用分子标记定位普通菜豆抗炭疽病基因[J]. 作物学报, 2011, 37(12): 2130-2135.
[12] 薛林, 张丹, 徐亮, 金萌萌, 彭长俊, 徐辰武. 玉米抗粗缩病自交系种质的发掘和遗传多样性及其在育种中的应用[J]. 作物学报, 2011, 37(12): 2123-2129.
[13] 王玲, 黄雯雯, 刘连盟, 傅强, 黄世文. 对中国南方部分籼型杂交水稻纹枯病抗性的评价[J]. 作物学报, 2011, 37(02): 263-270.
[14] 左示敏,王子斌,陈夕军,顾芳,张亚芳,陈宗祥. 水稻纹枯病改良新抗源YSBR1的抗性评价[J]. 作物学报, 2009, 35(4): 608-614.
[15] 马炳田;曲广林;黄文娟;林瑜凡;李仕贵. 大豆立枯丝核菌G蛋白ß亚基基因的克隆与分析[J]. 作物学报, 2009, 35(2): 370-374.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!