• •
马骏1,2,*,陈锋1,3,殷贵鸿1,3,胡海燕1,4,魏学宁5,解超杰1,2,孔令让6,*
MA Jun1,2,*,CHEN Feng1,3,YIN Gui-Hong1,3,HU Hai-Yan1,4,WEI Xue-Ning5,XIE Chao-Jie1,2,KONG Ling-Rang6,*
摘要: 小麦茎基腐病(Fusarium crown rot, FCR)是一种由镰孢菌属真菌引起的世界性土传病害。近年来该病害在我国迅速蔓延,已严重威胁小麦安全生产。种植抗病品种是防治茎基腐病最为经济、有效的措施之一。然而,目前我国小麦生产中大部分品种对于茎基腐病的抗性表现都不够理想,相关抗性遗传研究进展也相对较慢。本文综述了国内外在小麦茎基腐病抗性鉴定方法、抗源筛选以及抗性遗传分析等关键领域的研究进展,同时针对小麦茎基腐病遗传育种研究中的一些难点问题,建议通过建立温室-大田二级制接种鉴定体系、加大抗源筛选规模、聚合多种类型抗性基因以及开展全国联合攻关等措施加速茎基腐病抗病品种培育进程。
[1] Kazan K, Gardiner D M. Fusarium crown rot caused by Fusarium pseudograminearum in cereal crops: recent progress and future prospects. Mol Plant Pathol, 2018, 19: 1547–1562. [2] Beccari G, Covarelli L, Nicholson P. Infection processes and soft wheat response to root rot and crown rot caused by Fusarium culmorum. Plant Pathol, 2011, 60: 671–684. [3] Gao Y T, Tian X J, Wang W D, Xu X R, Su Y Q, Yang J T, Duan S N, Li J L, Xin M M, Peng H R, et al. Changes in concentrations and transcripts of plant hormones in wheat seedling roots in response to Fusarium crown rot. Crop J, 2023, 11: 1441–1450. [4] Smiley R W, Gourlie J A, Easley S A, Patterson L M, Whittaker R G. Crop damage estimates for crown rot of wheat and barley in the Pacific Northwest. Plant Dis, 2005, 89: 595–604. [5] 王宁堂, 王军利. 小麦茎基腐病的研究进展. 贵州农业科学, 2021, 49(5): 52–57. Wang N T, Wang J L. Research progress on wheat crown rot. Guizhou Agric Sci, 2021, 49(5): 52–57 (in Chinese with English abstract). [6] 栾冬冬, 贾吉玉, 王光州, 张俊伶. 中国小麦茎基腐病的发生现状及防治策略. 麦类作物学报, 2022, 42: 512–520. Luan D D, Jia J Y, Wang G Z, Zhang J L. Occurrence status and control strategies of wheat crown rot in China. J Triticeae Crops, 2022, 42: 512–520 (in Chinese with English abstract). [7] Mcknight T, Hart J. Some field observations on crown rot disease of wheat caused by Fusarium graminearum. Qld J Agric Sci, 1966, 23: 373–378. [8] Mishra P K, Tewari J P, Clear R M, Turkington T K. Genetic diversity and recombination within populations of Fusarium pseudograminearum from western Canada. Int Microbiol, 2006, 9: 65–68. [9] Tunali B, Nicol J M, Hodson D, Uçkun Z, Büyük O, Erdurmus D, Hekimhan H, Aktas H, Akbudak M A, Bagci S A. Root and crown rot fungi associated with spring, facultative, and winter wheat in Turkey. Plant Dis, 2008, 92: 1299–1306. [10] Castañares E, Wehrhahne L, Stenglein S A. Fusarium pseudograminearum associated with barley kernels in Argentina. Plant Dis, 2012, 96: 763. [11] Li H L, Yuan H X, Fu B, Xing X P, Sun B J, Tang W H. First report of Fusarium pseudograminearum causing crown rot of wheat in Henan, China. Plant Dis, 2012, 96: 1065. [12] Murray G M, Brennan J P. Estimating disease losses to the Australian wheat industry. Australas Plant Pathol, 2009, 38: 558–570. [13] 李巧云, 郭振峰, 郝晓鹏, 唐建卫, 高艳, 殷贵鸿. 小麦茎基腐病抗性鉴定方法研究进展. 麦类作物学报, 2023, 43: 591–599. Li Q Y, Guo Z F, Hao X P, Tang J W, Gao Y, Yin G H. Advances in identification methods for resistance to wheat crown rot. J Triticeae Crops, 2023, 43: 591–599 (in Chinese with English abstract). [14] Beccari G, Prodi A, Pisi A, Nipoti P, Onofri A, Nicholson P, Pfohl K, Karlovsky P, Gardiner D M, Covarelli L. Development of three Fusarium crown rot causal agents and systemic translocation of deoxynivalenol following stem base infection of soft wheat. Plant Pathol, 2018, 67: 1055–1065. [15] Mudge A M, Dill-Macky R, Dong Y H, Gardiner D M, White R G, Manners J M. A role for the mycotoxin deoxynivalenol in stem colonisation during crown rot disease of wheat caused by Fusarium graminearum and Fusarium pseudograminearum. Physiol Mol Plant Pathol, 2006, 69: 73–85. [16] Liu C J, Ogbonnaya F C. Resistance to Fusarium crown rot in wheat and barley: a review. Plant Breed, 2015, 134: 365–372. [17] 周淼平, 姚金保, 张鹏, 余桂红, 马鸿翔. 小麦抗茎腐病种质筛选及鉴定新方法的建立. 植物遗传资源学报, 2016, 17: 377–382. Zhou M P, Yao J B, Zhang P, Yu G H, Ma H X. Screening of wheat germplasm for crown rot resistance and establishment of a novel identification method. J Plant Genet Resour, 2016, 17: 377–382 (in Chinese with English abstract). [18] Ozdemir F, Koc N K, Paulitz T, Nicol J M, Schroeder K L, Poole G. Determination of fusarium crown rot resistance in wheat to Fusarium culmorum and Fusarium pseudogramineaum using real time PCR. Crop Prot, 2020, 135:105204. [19] Rahman M M, Davies P, Bansal U, Pasam R, Hayden M, Trethowan R. Relationship between resistance and tolerance of crown rot in bread wheat. Field Crops Res, 2021, 265:108106. [20] Wildermuth G B. Testing wheat seedlings for resistance to crown rot caused by Fusarium graminearum Group 1. Plant Dis, 1994, 78: 949–953. [21] Li X M, Liu C J, Chakraborty S, Manners J M, Kazan K. A simple method for the assessment of crown rot disease severity in wheat seedlings inoculated with Fusarium pseudograminearum. J Phytopathol, 2008, 156: 751–754. [22] Wallwork H, Butt M, Cheong J P E, Williams K J. Resistance to crown rot in wheat identified through an improved method for screening adult plants. Australas Plant Pathol, 2004, 33: 1–7. [23] Smiley R W, Yan H. Variability of Fusarium crown rot tolerances among cultivars of spring and winter wheat. Plant Dis, 2009, 93: 954–961. [24] 杨云, 贺小伦, 胡艳峰, 侯莹, 牛亚娟, 代君丽, 袁虹霞, 李洪连. 黄淮麦区主推小麦品种对假禾谷镰孢菌所致茎基腐病的抗性. 麦类作物学报, 2015, 35: 339–345. Yang Y, He X L, Hu Y F, Hou Y, Niu Y J, Dai J L, Yuan H X, Li H L. Resistance of major wheat cultivars in Huang-Huai wheat region to crown rot caused by Fusarium pseudograminearum. J Triticeae Crops, 2015, 35: 339–345 (in Chinese with English abstract). [25] Kelly A, MacDonald B, Percy C, Davies P. An improved method for selection of wheat genotypes for tolerance to crown rot caused by Fusarium pseudograminearum. J Phytopathol, 2021, 169: 339–349. [26] 张磊磊, 闫香凝, 原敏婕, 简俊涛, 韦佳杰, 李佳琦, 高梦娟, 刘璐, 李松刚, 胡鹏雨, 等. 小麦种质资源茎基腐病抗性鉴定及定位分析. 植物遗传资源学报. 2024, 25: 184–192. Zhang L L, Yan X N, Yuan M J, Jian J T, Wei J J, Li J Q, Gao M J, Liu L, Li S G, Hu P Y, et al. The resistance investigation and mapping analysis of Fusarium crown rot for wheat accessions. J Plant Genet Resour, 2024, 25: 184–192 (in Chinese with English abstract). [27] Erginbas-Orakci G, Poole G, Nicol J M, Paulitz T, Dababat A A, Campbell K. Assessment of inoculation methods to identify resistance to Fusarium crown rot in wheat. J Plant Dis Prot, 2016, 123: 19–27. [28] Akinsanmi O A, Mitter V, Simpfendorfer S, Backhouse D, Chakraborty S. Identity and pathogenicity of Fusarium spp. isolated from wheat fields in Queensland and northern New South Wales. Aust J Agric Res, 2004, 55: 97. [29] Mitter V, Zhang M C, Liu C J, Ghosh R, Ghosh M, Chakraborty S. A high-throughput glasshouse bioassay to detect crown rot resistance in wheat germplasm. Plant Pathol, 2006, 55: 433–441. [30] Li J L, Xu X R, Ma Y L, Sun Q X, Xie C J, Ma J. An improved inoculation method to detect wheat and barley genotypes for resistance to Fusarium crown rot. Plant Dis, 2022, 106: 1122–1127. [31] Poole G J, Smiley R W, Paulitz T C, Walker C A, Carter A H, See D R, Garland-Campbell K. Identification of quantitative trait loci (QTL) for resistance to Fusarium crown rot (Fusarium pseudograminearum) in multiple assay environments in the Pacific Northwestern US. Theor Appl Genet, 2012, 125: 91–107. [32] Rahman M, Davies P, Bansal U, Pasam R, Hayden M, Trethowan R. Marker-assisted recurrent selection improves the crown rot resistance of bread wheat. Mol Breed, 2020, 40: 28. [33] Purss G S. Studies of varietal resistance to crown rot of wheat caused by Fusarium graminearum Schw. Qld J Agric Anim Sci, 1966, 23: 475–498. [34] Shi S D, Zhao J C, Pu L F, Sun D J, Han D J, Li C L, Feng X J, Fan D S, Hu X P. Identification of new sources of resistance to crown rot and Fusarium head blight in wheat. Plant Dis, 2020, 104: 1979–1985. [35] 张鹏, 霍燕, 周淼平, 姚金保, 马鸿翔. 小麦禾谷镰孢菌茎基腐病抗源的筛选与评价. 植物遗传资源学报, 2009, 10: 431–435. Zhang P, Huo Y, Zhou M P, Yao J B, Ma H X. Screening and evaluation of resistance sources to crown rot caused by Fusarium graminearum in wheat. J Plant Genet Resour, 2009, 10: 431–435 (in Chinese with English abstract). [36] Wildermuth G B, Purss G S. Further sources of field resistance to crown rot (Gibberella zeae) of cereals in Queensland. Aust J Exp Agric Ani Husb, 1971, 11: 455–458. [37] Wildermuth G B, Morgan J M. Genotypic differences in partial resistance to crown rot caused by Fusarium pseudograminearum in relation to an osmoregulation gene in wheat. Australas Plant Pathol, 2004, 33: 121–123. [38] 吴玉星, 韩森, 王亚娇, 张巧丽, 高建海, 栗秋生, 孔令晓. 河北省小麦主栽品种对茎基腐病抗性鉴定及评价指标相关性分析. 植物保护, 2023, 49: 267–271. Wu Y X, Han S, Wang Y J, Zhang Q L, Gao J H, Li Q S, Kong L X. Resistance identification of major wheat cultivars in Hebei province to crown rot and correlation analysis of evaluation indicators. Plant Prot, 2023, 49: 267–271 (in Chinese with English abstract). [39] Liu C J, Ma J, Li H B, Liu Y X, Liu G R, Wen S M, Zhou M X, Yan G J, Chakraborty S. The homoeologous regions on long arms of group 3 chromosomes in wheat and barley harbour major crown rot resistance loci. Czech J Genet Plant Breed, 2011, 47: S109–S114. [40] Yang X, Pan Y B, Singh P K, He X Y, Ren Y, Zhao L, Zhang N, Cheng S H, Chen F. Investigation and genome-wide association study for Fusarium crown rot resistance in Chinese common wheat. BMC Plant Biol, 2019, 19: 153. [41] 金京京, 齐永志, 王丽, 王芳芳, 闫翠梅, 李保云, 解超杰, 甄文超, 马骏. 小麦种质对茎基腐病抗性评价及优异种质筛选. 植物遗传资源学报, 2020, 21: 308–313. Jin J J, Qi Y Z, Wang L, Wang F F, Yan C M, Li B Y, Xie C J, Zhen W C, Ma J. Evaluation of resistance to crown rot and screening of elite germplasm in wheat. J Plant Genet Resour, 2020, 21: 308–313 (in Chinese with English abstract). [42] 徐飞, 李淑芳, 石瑞杰, 王俊美, 刘继红, 周益林, 宋玉立, 赵国建, 张姣姣, 李亚红. 黄淮麦区主栽小麦品种抗茎基腐病评价及茎秆和籽粒中毒素积累分析. 植物病理学报. 2021, 51: 912–920. Xu F, Li S F, Shi R J, Wang J M, Liu J H, Zhou Y L, Song Y L, Zhao G J, Zhang J J, Li Y H. Evaluation of resistances to Fusarium crown rot caused by Fusarium pseudograminearum in commercial wheat cultivars of Huang-huai wheat growing region and toxin accumulation in stems and kernels. Acta Phytopathol Sin, 2021, 51: 912–920 (in Chinese with English abstract). [43] 中华人民共和国农业农村部.农业农村部办公厅关于印发《小麦茎基腐病防控技术指导意见》的通知(农办农[2023]31号). https://www.moa.gov.cn/nybgb/2023/202310/202311/t20231101_6439584.htm. Ministry of Agriculture and Rural Affairs of the People’s Republic of China. Notice of General Office of the Ministry of Agriculture and Rural Affairs on Printing and Distributing “the Technical Guidelines for the Prevention and Control of Wheat Crown Rot” (Agriculture Office of Agriculture [2023] No. 31). https://www.moa.gov.cn/nybgb/2023/202310/202311/t20231101_6439584.htm (in Chinese). [44] Wang H W, Sun S L, Ge W Y, Zhao L F, Hou B Q, Wang K, Lyu Z F, Chen L Y, Xu S S, Guo J, et al. Horizontal gene transfer of Fhb7 from fungus underlies Fusarium head blight resistance in wheat. Science, 2020, 368: eaba5435. [45] Li Q Y, Hao X P, Guo Z F, Qu K F, Gao M S, Song G L, Yin Z, Yuan Y H, Dong C H, Niu J S, et al. Screening and resistance locus identification of the mutant fcrZ22 resistant to crown rot caused by Fusarium pseudograminearum. Plant Dis, 2024, 108: 426–433. [46] Xu X R, Su Y Q, Yang J T, Li J L, Gao Y T, Li C, Wang X Y, Gou L L, Zheng Z, Xie C J, et al. A novel QTL conferring Fusarium crown rot resistance on chromosome 2A in a wheat EMS mutant. Theor Appl Genet, 2024, 137: 49. [47] Tong J Y, Zhao C, Liu D, Jambuthenne D T, Sun M J, Dinglasan E, Periyannan S K, Hickey L T, Hayes B. Genome-wide atlas of rust resistance loci in wheat. Theor Appl Genet, 2024, 137:179. [48] Bovill W D, Horne M, Herde D, Davis M, Wildermuth G B, Sutherland M W. Pyramiding QTL increases seedling resistance to crown rot (Fusarium pseudograminearum) of wheat (Triticum aestivum). Theor Appl Genet, 2010, 121: 127–136. [49] Collard B C Y, Jolley R, Bovill W D, Grams R A, Wildermuth G B, Sutherland M W. Confirmation of QTL mapping and marker validation for partial seedling resistance to crown rot in wheat line ‘2–49’. Aust J Agric Res, 2006, 57: 967–973. [50] Zheng Z, Kilian A, Yan G J, Liu C J. QTL conferring Fusarium crown rot resistance in the elite bread wheat variety EGA Wylie. PLoS One, 2014, 9: e96011. [51] Yang X M, Ma J, Li H B, Ma H X, Yao J B, Liu C J. Different genes can be responsible for crown rot resistance at different developmental stages of wheat and barley. Eur J Plant Pathol, 2010, 128: 495–502. [52] Martin A, Bovill W D, Percy C D, Herde D, Fletcher S, Kelly A, Neate S M, Sutherland M W. Markers for seedling and adult plant crown rot resistance in four partially resistant bread wheat sources. Theor Appl Genet, 2015, 128: 377–385. [53] Zheng Z, Powell J, Gao S, Percy C, Kelly A, MacDonald B, Zhou M X, Davies P, Liu C J. Investigation of two QTL conferring seedling resistance to Fusarium crown rot in barley on reducing grain yield loss under field environments. Agronomy, 2022, 12:1282. [54] Hou S, Lin Y, Yu S F, Yan N, Chen H, Shi H R, Li C X, Wang Z Q, Liu Y X. Genome-wide association analysis of Fusarium crown rot resistance in Chinese wheat landraces. Theor Appl Genet, 2023, 136:101. [55] Collard B C Y, Grams R A, Bovill W D, Percy C D, Jolley R, Lehmensiek A, Wildermuth G, Sutherland M W. Development of molecular markers for crown rot resistance in wheat: mapping of QTLs for seedling resistance in a “2-49” × “Janz” population. Plant Breed, 2005, 124: 532–537. [56] 郭灿, 程敦公, 齐军山, 刘晓晗, 刘海琛, 刘秀坤, 陈志伟, 单宝雪, 肖彦军, 张玉梅, 等. 普通小麦苗期茎基腐病抗性QTL定位. 山东农业科学, 2022, 54(7): 1–7. Guo C, Cheng D G, Qi J S, Liu X H, Liu H C, Liu X K, Chen Z W, Shan B X, Xiao Y J, Zhang Y M, et al. QTL mapping for resistance to Fusarium crown rot in common wheat at seedling stage. Shandong Agric Sci, 2022, 54(7): 1–7 (in Chinese with English abstract). [57] Jin J J, Duan S N, Qi Y Z, Yan S H, Li W, Li B Y, Xie C J, Zhen W C, Ma J. Identification of a novel genomic region associated with resistance to Fusarium crown rot in wheat. Theor Appl Genet, 2020, 133: 2063–2073. [58] Su Y Q, Xu X R, Wang Y Q, Wang T Z, Yu J Z, Yang J T, Li J L, Gao Y T, Wang Y X, Sang W, et al. Identification of genetic loci and candidate genes underlying Fusarium crown rot resistance in wheat. Theor Appl Genet, 2025, 138: 23. [59] Bovill W D, Ma W, Ritter K, Collard B C Y, Davis M, Wildermuth G B, Sutherland M W. Identification of novel QTL for resistance to crown rot in the doubled haploid wheat population “W21MMT70” × “Mendos”. Plant Breed, 2006, 125: 538–543. [60] Lyu G, Zhang Y X, Ma L, Yan X N, Yuan M J, Chen J H, Cheng Y Z, Yang X, Qiao Q, Zhang L L, et al. A cell wall invertase modulates resistance to Fusarium crown rot and sharp eyespot in common wheat. J Integr Plant Biol, 2023, 65: 1814–1825. [61] 周淼平, 张鹏, 杨学明, 陈达, 姚金保. 小麦茎基腐病抗性QTL的分析. 麦类作物学报, 2021, 41: 538–543. Zhou M P, Zhang P, Yang X M, Chen D, Yao J B. Analysis of QTLs for the resistance to crown root in wheat. J Triticeae Crops, 2021, 41: 538–543 (in Chinese with English abstract). [62] Pariyar S R, Erginbas-Orakci G, Dadshani S, Chijioke O B, Léon J, Dababat A A, Grundler F M W. Dissecting the genetic complexity of Fusarium crown rot resistance in wheat. Sci Rep, 2020, 10: 3200. [63] Erginbas-Orakci G, Sehgal D, Sohail Q, Ogbonnaya F, Dreisigacker S, Pariyar S R, Dababat A A. Identification of novel quantitative trait loci linked to crown rot resistance in spring wheat. Int J Mol Sci, 2018, 19: 2666. [64] Malosetti M, Zwep L B, Forrest K, van Eeuwijk F A, Dieters M. Lessons from a GWAS study of a wheat pre-breeding program: pyramiding resistance alleles to Fusarium crown rot. Theor Appl Genet, 2021, 134: 897–908. [65] Ma J, Zhang C Y, Liu Y X, Yan G J, Liu C J. Enhancing Fusarium crown rot resistance of durum wheat by introgressing chromosome segments from hexaploid wheat. Euphytica, 2012, 186: 67–73. [66] 蒲乐凡, 任慧, 欧杨晨, 任慧莉, 曾庆东, 胡小平, 李春莲, 韩德俊. 小麦茎基腐病和赤霉病抗源筛选及关联SNP位点分析. 麦类作物学报, 2020, 40: 780–788. Pu L F, Ren H, Ou Y C, Ren H L, Zeng Q D, Hu X P, Li C L, Han D J. Screening of germplasms resistant to crown rot and Fusarium head blight and the associated SNPs in wheat. J Triticeae Crops, 2020, 40: 780–788 (in Chinese with English abstract). [67] Ma J, Li H B, Zhang C Y, Yang X M, Liu Y X, Yan G J, Liu C J. Identification and validation of a major QTL conferring crown rot resistance in hexaploid wheat. Theor Appl Genet, 2010, 120: 1119–1128. [68] Xiong F, Zhu X L, Luo C S, Liu Z X, Zhang Z Y. The cytosolic acetoacetyl-CoA thiolase TaAACT1 is required for defense against Fusarium pseudograminearum in wheat. Int J Mol Sci, 2023, 24: 6165. [69] Yang X, Zhong S B, Zhang Q J, Ren Y, Sun C W, Chen F. A loss-of-function of the dirigent gene TaDIR-B1 improves resistance to Fusarium crown rot in wheat. Plant Biotechnol J, 2021, 19: 866–868. [70] Zheng Z, Gao S, Zhou M X, Yan G J, Liu C J. Enhancing Fusarium crown rot resistance by pyramiding large-effect QTL in common wheat (Triticum aestivum L.). Mol Breed, 2017, 37:107. [71] Su J, Zhao J J, Zhao S Q, Li M Y, Pang S Y, Kang Z S, Zhen W C, Chen S S, Chen F, Wang X D. Genetics of resistance to common root rot (spot blotch), Fusarium crown rot, and sharp eyespot in wheat. Front Genet, 2021, 12: 699342. [72] Bai Z Y, Liu C J. Histological evidence for different spread of Fusarium crown rot in barley genotypes with different heights. J Phytopathol, 2015, 163: 91–97. [73] Chen G D, Yan W, Liu Y X, Wei Y M, Zhou M X, Zheng Y L, Manners J M, Liu C J. The non-gibberellic acid-responsive semi-dwarfing gene uzu affects Fusarium crown rot resistance in barley. BMC Plant Biol, 2014, 14: 22. [74] Keyes G J, Paolillo D J, Sorrells M E. The effects of dwarfing genes Rht1 and Rht2 on cellular dimensions and rate of leaf elongation in wheat. Ann Bot, 1989, 64: 683–690. [75] Liu Y X, Yang X M, Ma J, Wei Y M, Zheng Y L, Ma H X, Yao J B, Yan G J, Wang Y G, Manners J M, et al. Plant height affects Fusarium crown rot severity in wheat. Phytopathology, 2010, 100: 1276–1281. [76] Aguilar V, Stamp P, Winzeler M, Winzeler H, Schachermayr G, Keller B, Zanetti S, Messmer M M. Inheritance of field resistance to Stagonospora nodorum leaf and glume blotch and correlations with other morphological traits in hexaploid wheat (Triticum aestivum L.). Theor Appl Genet, 2005, 111: 325–336. [77] Czembor P C, Arseniuk E, Radecka-Janusik M, Piechota U, Słowacki P. Quantitative trait loci analysis of adult plant resistance to Parastagonospora nodorum blotch in winter wheat cv. Liwilla (Triticum aestivum L.). Eur J Plant Pathol, 2019, 155: 1001–1016. [78] Rivera-Burgos L A, Brown-Guedira G, Johnson J, Mergoum M, Cowger C. Accounting for heading date gene effects allows detection of small-effect QTL associated with resistance to Septoria nodorum blotch in wheat. PLoS One, 2022, 17: e0268546. [79] Qi H J, Zhu X L, Shen W B, Yang X, Zhang C Z, Li G Y, Chen F, Wei X N, Zhang Z Y. TaRLK-6A promotes Fusarium crown rot resistance in wheat. J Integr Plant Biol, 2024, 66: 12–16. [80] Li J L, Zhang C Z, Xu X R, Su Y Q, Gao Y T, Yang J T, Xie C J, Ma J. A MYB family transcription factor TdRCA1 from wild emmer wheat regulates anthocyanin biosynthesis in coleoptile. Theor Appl Genet, 2024, 137: 208. [81] Qi H J, Guo F L, Lv L J, Zhu X L, Zhang L, Yu J F, Wei X N, Zhang Z Y. The wheat wall-associated receptor-like kinase TaWAK-6D mediates broad resistance to two fungal pathogens Fusarium pseudograminearum and Rhizoctonia cerealis. Front Plant Sci, 2021, 12: 758196. [82] Wu T C, Guo F L, Xu G B, Yu J F, Zhang L, Wei X N, Zhu X L, Zhang Z Y. The receptor-like kinase TaCRK-7A inhibits Fusarium pseudograminearum growth and mediates resistance to Fusarium crown rot in wheat. Biology, 2021, 10:1122. 16: 2549. [84] Hua L, Song R, Hao X H, Zhang J, Liu Y N, Luo J, Ren X P, Li H N, Wang G P, Rehman S U, et al. Manipulation of the brown glume and internode 1 gene leads to alterations in the colouration of lignified tissues, lignin content and pathogen resistance in wheat. Plant Biotechnol J, 2025, 23: 1548–1564. [85] Xu X, Yu T F, Wei J T, Ma X F, Liu Y W, Zhang J P, Zheng L, Hou Z H, Chen J, Zhou Y B, et al. TaWRKY24 integrates the tryptophan metabolism pathways to participate in defense against Fusarium crown rot in wheat. Plant J, 2024, 120:1764–1785. [86] Li M Y, Zhao S Q, Yang J Y, Ren Y, Su J, Zhao J J, Ren X P, Wang C Y, Chen S S, Yu X M, et al. Exogenous expression of barley HvWRKY6 in wheat improves broad-spectrum resistance to leaf rust, Fusarium crown rot, and sharp eyespot. Int J Biol Macromol, 2022, 218: 1002–1012. [87] Mandalà G, Tundo S, Francesconi S, Gevi F, Zolla L, Ceoloni C, D’Ovidio R. Deoxynivalenol detoxification in transgenic wheat confers resistance to Fusarium head blight and crown rot diseases. Mol Plant Microbe Interact, 2019, 32: 583–592. [88] Zhang N, Tang L, Li S G, Liu L, Gao M J, Wang S S, Chen D Y, Zhao Y C, Zheng R Q, Soleymaniniya A, et al. Integration of multi-omics data accelerates molecular analysis of common wheat traits. Nat Commun, 2025, 16: 2200. al. The Fusarium crown rot pathogen Fusarium pseudograminearum triggers a suite of transcriptional and metabolic changes in bread wheat (Triticum aestivum L.). Ann Bot, 2017, 119: 853–867. [90] Jin J J, Duan S N, Qi Y Z, Zhen W C, Ma J. Identification of proteins associated with Fusarium crown rot resistance in wheat using label-free quantification analysis. J Integr Agric, 2021, 20: 3209–3221. [91] Qiao F F, Yang X W, Xu F D, Huang Y, Zhang J M, Song M, Zhou S M, Zhang M, He D X. TMT-based quantitative proteomic analysis reveals defense mechanism of wheat against the crown rot pathogen Fusarium pseudograminearum. BMC Plant Biol, 2021, 21: 82. [92] Duan S N, Jin J J, Gao Y T, Jin C L, Mu J Y, Zhen W C, Sun Q X, Xie C J, Ma J. Integrated transcriptome and metabolite profiling highlights the role of benzoxazinoids in wheat resistance against Fusarium crown rot. Crop J, 2022, 10: 407–417. [93] Su Z Y, Gao S, Zheng Z, Stiller J, Hu S W, McNeil M D, Shabala S, Zhou M X, Liu C J. Transcriptomic insights into shared responses to Fusarium crown rot infection and drought stresses in bread wheat (Triticum aestivum L.). Theor Appl Genet, 2024, 137: 34. [94] Ma J, Du G, Li X, Zhang C, Guo J. A major locus controlling malondialdehyde content under water stress is associated with Fusarium crown rot resistance in wheat. Mol Genet Genomics, 2015, 290: 1955–1962. [95] Ma Z Q, Xie Q, Li G Q, Jia H Y, Zhou J Y, Kong Z X, Li N, Yuan Y. Germplasms, genetics and genomics for better control of disastrous wheat Fusarium head blight. Theor Appl Genet, 2020, 133: 1541–1568. [96] Xing L P, Hu P, Liu J Q, Witek K, Zhou S, Xu J F, Zhou W H, Gao L, Huang Z P, Zhang R Q, et al. Pm21 from Haynaldia villosa encodes a CC-NBS-LRR protein conferring powdery mildew resistance in wheat. Mol Plant, 2018, 11: 874–878. [97] He H G, Zhu S Y, Zhao R H, Jiang Z N, Ji Y Y, Ji J, Qiu D, Li H J, Bie T D. Pm21, encoding a typical CC-NBS-LRR protein, confers broad-spectrum resistance to wheat powdery mildew disease. Mol Plant, 2018, 11: 879–882. [98] Guo X R, Shi Q H, Liu Y, Su H D, Zhang J, Wang M, Wang C H, Wang J, Zhang K B, Fu S L, et al. Systemic development of wheat-Thinopyrum elongatum translocation lines and their deployment in wheat breeding for Fusarium head blight resistance. Plant J, 2023, 114: 1475–1489. |
[1] | 杨婷婷, 陈娟, ABDUL Rehman, 李婧, 闫素辉, 汪建来, 李文阳. 花后弱光对软质小麦干物质积累转运、籽粒产量和淀粉品质的影响[J]. 作物学报, 2025, 51(8): 2204-2219. |
[2] | 张飞飞, 何万龙, 焦文娟, 白斌, 耿洪伟, 程宇坤. 小麦抗条锈病相关性状元分析及候选基因分析[J]. 作物学报, 2025, 51(8): 2111-2127. |
[3] | 闫喆林, 任强, 樊志龙, 殷文, 孙亚丽, 范虹, 何蔚, 胡发龙, 闫丽娟, 柴强. 氮肥后移优化绿洲灌区小麦间作玉米种间关系提高氮素利用效率[J]. 作物学报, 2025, 51(8): 2190-2203. |
[4] | 宋改利, 王璐倩, 屈柯飞, 唐建卫, 董纯豪, 黄振扑, 高艳, 牛吉山, 殷贵鸿, 李巧云. Bipolaris sorokiniana黑胚病对中筋小麦淀粉含量、粒度分布与糊化特性的影响[J]. 作物学报, 2025, 51(8): 2164-2175. |
[5] | 王曜阔, 王文政, 张敏, 刘希伟, 杨敏, 李昊昱, 张灵鑫, 闫彦菲, 蔡瑞国. 水氮运筹对冬小麦籽粒GMP合成和面粉加工品质的影响[J]. 作物学报, 2025, 51(8): 2176-2189. |
[6] | 高梦娟, 赵贺莹, 陈家辉, 陈晓倩, 牛萌康, 钱琪润, 崔陆飞, 邢江敏, 银庆淼, 郭雯, 张宁, 孙丛苇, 阳 霞, 裴丹, 贾奥琳, 陈锋, 余晓东, 任妍. 小麦抗纹枯病新位点Qse.hnau-5AS的定位及其候选基因鉴定[J]. 作物学报, 2025, 51(8): 2240-2250. |
[7] | 姜朋, 吴磊, 黄倩楠, 李畅, 王化敦, 何漪, 张鹏, 张旭. 矮秆基因Rht-D1在长江中下游麦区的育种利用探索[J]. 作物学报, 2025, 51(8): 2077-2086. |
[8] | 鲁向前, 付玉洁, 赵俊恒, 郑楠楠, 孙楠楠, 张国平, 叶玲珍. 小麦花药培养最佳取样时期穗部形态特征鉴定与高培养力基因型筛选[J]. 作物学报, 2025, 51(8): 2033-2047. |
[9] | 蔡金珊, 李超男, 王景一, 李宁, 柳玉平, 景蕊莲, 李龙, 孙黛珍. 小麦幼苗根系性状全基因组关联分析及TaSRL-3B优异等位基因发掘[J]. 作物学报, 2025, 51(8): 2020-2032. |
[10] | 吴柳格, 陈坚, 张鑫, 邓艾兴, 宋振伟, 郑成岩, 张卫建. 近二十年国审冬小麦品种的产量与品质性状变化趋势研究[J]. 作物学报, 2025, 51(7): 1814-1826. |
[11] | 赵佳雯, 李子洪, 欧星雨, 王伊朗, 丁小飞, 梁乐瑶, 丁文金, 张海鹏, 马尚宇, 樊永惠, 黄正来, 张文静. 氮肥与钾肥运筹对弱筋小麦籽粒产量、品质的影响[J]. 作物学报, 2025, 51(7): 1914-1933. |
[12] | 赵超男, 王金凤, 张玉, 张丽, 李瑞琦, 王鹏飞, 李鸽子, 张宏军, 虞波, 康国章. 全基因组关联分析定位与挖掘小麦氮高效基因[J]. 作物学报, 2025, 51(7): 1801-1813. |
[13] | 王天译, 杨绣娟, 赵佳佳, 郝宇琼, 郑兴卫, 武棒棒, 李晓华, 郝水源, 郑军. 山西小麦醇溶蛋白多样性及其对面粉品质效应研究[J]. 作物学报, 2025, 51(7): 1784-1800. |
[14] | 陈如雪, 孙丽芳, 张芯源, 牟海萌, 张永新, 袁丽雪, 彭仕乐, 王壮壮, 王永华. 秸秆还田与微生物菌剂配施对冬小麦旗叶碳氮代谢及产量形成的影响[J]. 作物学报, 2025, 51(7): 1901-1913. |
[15] | 吕国锋, 范金平, 吴素兰, 张晓, 赵仁慧, 李曼, 王玲, 高德荣, 别同德, 刘健. 早熟小麦品种扬麦37主要目标性状的遗传构成分析[J]. 作物学报, 2025, 51(6): 1538-1547. |
|