欢迎访问作物学报,今天是

作物学报 ›› 2025, Vol. 51 ›› Issue (10): 2713-2726.doi: 10.3724/SP.J.1006.2025.55028

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

花生抗旱基因AhCPK8及其互作蛋白GAPDH的克隆及分子鉴定

何梅1,2(), 张佳蕾1, 范士凯1, 孟静静1, 王建国1, 郭峰1, 李新国1, 万书波1,*(), 杨莎1,*()   

  1. 1山东省农业科学院农作物种质资源研究所, 山东济南 250100
    2山东师范大学生命科学学院, 山东济南 250399
  • 收稿日期:2025-04-17 接受日期:2025-07-09 出版日期:2025-10-12 网络出版日期:2025-07-22
  • 通讯作者: *万书波, E-mail: wanshubo2016@163.com;杨莎, E-mail: yangsha0904@126.com
  • 作者简介:E-mail: hemei920@163.com
  • 基金资助:
    国家自然科学基金项目(32272020);山东省重点研发计划项目(ZFJH202310);泰山学者工程项目(tspd20221107);泰山学者工程项目(tsqn202408305)

Cloning and molecular identification of the peanut drought-resistance gene AhCPK8 and its interacting protein GAPDH

HE Mei1,2(), ZHANG Jia-Lei1, FAN Shi-Kai1, MENG Jing-Jing1, WANG Jian-Guo1, GUO Feng1, LI Xin-Guo1, WAN Shu-Bo1,*(), YANG Sha1,*()   

  1. 1Crop Germplasm Resources Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, China
    2College of Life Sciences, Shandong Normal University, Jinan 250399, Shandong, China
  • Received:2025-04-17 Accepted:2025-07-09 Published:2025-10-12 Published online:2025-07-22
  • Contact: *E-mail: wanshubo2016@163.com;E-mail: yangsha0904@126.com
  • Supported by:
    National Natural Science Foundation of China(32272020);Shandong Key R&D Program(ZFJH202310);Taishan Scholars Program(tspd20221107);Taishan Scholars Program(tsqn202408305)

摘要:

花生(Arachis hypogaea L.)是重要的油料和经济作物, 干旱是限制花生产量的主要因素之一。探明花生响应干旱胁迫的关键基因, 对后续花生品种改良, 提高产量具有重要意义。本研究以花生品种花育22号(HY22)为研究对象, 足钙(SC)、缺钙(NC) 2种营养液水培培养, 终浓度为20% PEG-6000溶液模拟干旱胁迫处理(DSC、DNC)。通过干旱处理后转录组数据结合花生钙传感蛋白编码基因CPKs的差异表达筛选出花生抗旱基因AhCPK8。以干旱处理后的花生叶片为材料, 利用酵母双杂交筛选到其互作蛋白甘油醛-3-磷酸脱氢酶(GAPDH)并得到初步验证。GAPDH家族基因在调节植物对非生物胁迫的反应中发挥着重要作用。基于AhGAPDH基因家族的生物信息学分析, 在花生中共鉴定出21个GAPDH基因, 再根据大豆和拟南芥系统发育树关系以及基因在12条染色体上的先后顺序进行命名。基本理化特征结果表明, AhGAPDH家族成员大多数为稳定、疏水性蛋白; 同一聚类的AhGAPDH家族成员大多数表现出相似的motif结构、保守结构域和基因结构; 启动子区域中有丰富的光响应、植物激素响应及非生物胁迫响应相关的顺式作用元件。AhCPK8与AhGAPDH存在相互作用, 共同调控花生的抗旱性。

关键词: 花育22号, 抗旱性, AhCPK8, 互作蛋白, GAPDH

Abstract:

Peanut is an important oilseed and economic crop, and drought is one of the major factors limiting its yield. Identifying key genes involved in the peanut drought response is of great significance for improving drought tolerance and enhancing yield. In this study, the peanut variety Huayu 22 (HY22) was grown hydroponically using two nutrient solutions: one with sufficient calcium (SC) and one without calcium (NC). Drought stress treatments (DSC and DNC) were simulated using PEG-6000 at a final concentration of 20%. Based on transcriptome analysis and differential expression of calcium-dependent protein kinases (CPKs), we identified the drought-responsive gene AhCPK8, which encodes a calcium-sensing protein in peanut. Using yeast two-hybrid assays and drought-treated peanut leaves, we screened for and validated its interacting protein, glyceraldehyde-3-phosphate dehydrogenase (GAPDH). The GAPDH gene family plays a crucial role in regulating plant responses to abiotic stress. Through bioinformatics analysis, a total of 21 AhGAPDH genes were identified in peanut. These genes were named according to their phylogenetic relationships with soybean and Arabidopsis thaliana, as well as their chromosomal positions across the 12 peanut chromosomes. Physicochemical characterization revealed that most AhGAPDH proteins are stable and hydrophobic. Members within the same phylogenetic cluster shared similar motif structures, conserved domains, and gene architectures. Moreover, their promoter regions contain numerous cis-acting elements related to light responsiveness, phytohormone signaling, and abiotic stress responses. The interaction between AhCPK8 and AhGAPDH suggests a coordinated regulatory mechanism that contributes to drought resistance in peanut.

Key words: Huayu 22, drought resistance, AhCPK8, interacting protein, GAPDH

表1

基因名称及qRT-PCR引物"

基因名称
Gene name
正向引物序列
Forword primer sequence (5′-3′)
反向引物序列
Reverse primer sequence (5′-3′)
TUA5 CTGATGTCGCTGTGCTCTTGG CTGTTGAGGTTGGTGTAGGTAGG
AhCPK2 TGGGCAGAGACCGAACAAGGG CCGCTGTCAACCGCTTCTTAGG
AhCPK8 CCTGCAAGTCCATCCCAAAGCG CGAGATGAACGGCAAGGCTGTC
AhCPK36 TTCCTCCTCATCCGCCACCATC CCCAGCTCCCTACCGAAGACG
AhCPK40 TGGAGGCGGCTGATGTGGAC CCTCGCGCTCTAGCTTGTTGAG

图1

FH18和NH5中CaM/CML、CPKs和CBL家族基因对干旱胁迫的响应 A~C图分别是CaM/CML、CPKs和CBL三大类钙离子识别蛋白家族基因的表达谱。18/63: 在干旱胁迫下表现上调的18个CaM/CML家族基因成员占全部63个家族基因成员的比例; 24/45: 在干旱胁迫下表现上调的24个CPKs家族基因成员占全部45个家族基因成员的比例; 7/23: 在干旱胁迫下表现上调的7个CBL家族基因成员占全部23个家族基因成员的比例。FH18: 干旱敏感型花生品种; NH5: 耐旱型花生品种。"

图2

AhCPK2、AhCPK8、AhCPK36、AhCPK40在不同处理下的表达模式 *、**、***、****分别表示在0.05、0.01、0.001、0.0001水平差异显著。DSC: 干旱处理足钙培养条件下的花育22号幼苗; DNC: 干旱处理缺钙培养条件下的花育22号幼苗。"

图3

诱饵毒性及自激活检测"

图4

AhCPK8互作蛋白的筛选 A: Y2Hgold [pGBKT7-AhCPK8] +10 μL文库质粒的转化效率。B: QDO/X-α-gal平板上筛选阳性克隆。"

图5

蛋白互作验证 a: 阳性对照pGBKT7-53+pGADT7-T; b: 阴性对照pGBKT7- Lam+pGADT7-T; c: 试验组pGBKT7-AhCPK8+pGADT7; d: 试验组pGBKT7-AhCPK8+pGADT7-AhGAPDH。"

表2

AhGAPDH基因家族成员命名表"

名称
Symbol
序列ID
Sequence ID
名称
Symbol
序列ID
Sequence ID
AhGAPA1 arahy.Tifrunner.gnm2.ann1.D2DMXG.1 AhGAPC3 arahy.Tifrunner.gnm2.ann1.8UAX1T.1
AhGAPA2 arahy.Tifrunner.gnm2.ann1.YN8IJ2.1 AhGAPC4 arahy.Tifrunner.gnm2.ann1.YH7XEC.1
AhGAPA3 arahy.Tifrunner.gnm2.ann1.8EQN3M.1 AhGAPC5 arahy.Tifrunner.gnm2.ann1.YH7XEC.3
AhGAPA4 arahy.Tifrunner.gnm2.ann1.HFT5ZK.1 AhGAPC6 arahy.Tifrunner.gnm2.ann1.SIHD8Y.1
AhGAPA5 arahy.Tifrunner.gnm2.ann1.FN6RIW.1 AhGAPC7 arahy.Tifrunner.gnm2.ann1.VRBE94.1
AhGAPA6 arahy.Tifrunner.gnm2.ann1.BA5EUQ.1 AhGAPC8 arahy.Tifrunner.gnm2.ann1.QHP0ED.1
AhGAPA7 arahy.Tifrunner.gnm2.ann1.BFW5UL.1 AhGAPCp1 arahy.Tifrunner.gnm2.ann1.5PGU74.1
AhGAPA8 arahy.Tifrunner.gnm2.ann1.6W2CKZ.1 AhGAPCp2 arahy.Tifrunner.gnm2.ann1.5PGU74.2
AhGAPA9 arahy.Tifrunner.gnm2.ann1.ZX8DBB.1 AhGAPCp3 arahy.Tifrunner.gnm2.ann1.F06IQB.2
AhGAPC1 arahy.Tifrunner.gnm2.ann1.YL3Z6V.1 AhGAPCp4 arahy.Tifrunner.gnm2.ann1.F06IQB.3
AhGAPC2 arahy.Tifrunner.gnm2.ann1.PV44JT.1

表3

AhGAPDH基因家族成员基本信息表"

名称
Symbol
氨基酸数目
Number of amino acid
分子量
Molecular weight (Da)
等电点
pI
不稳定指数
Instability index
脂溶指数
Aliphatic index
总平均亲水性值
Grand average of
hydropathicity
AhGAPA1 388 41,339.06 8.92 24.19 89.95 -0.079
AhGAPA2 509 54,458.07 5.59 29.04 89.80 -0.101
AhGAPA3 359 38,725.28 5.48 24.14 93.31 -0.040
AhGAPA4 428 45,980.96 9.40 41.61 92.69 -0.130
AhGAPA5 405 43,179.17 8.44 24.73 91.68 -0.056
AhGAPA6 478 51,430.76 6.80 27.71 89.08 -0.114
AhGAPA7 381 40,951.94 5.50 25.43 94.88 -0.005
AhGAPA8 469 50,071.35 5.32 32.03 99.10 0.082
AhGAPA9 586 63,306.33 7.93 41.38 91.96 -0.102
AhGAPC1 336 36,546.89 7.06 23.08 91.34 -0.108
AhGAPC2 347 37,480.97 8.23 33.58 90.49 -0.065
AhGAPC3 278 31,231.71 6.07 30.71 90.43 -0.282
AhGAPC4 339 36,841.07 7.02 28.17 90.27 -0.087
AhGAPC5 223 24,220.73 8.68 26.63 83.50 -0.122
AhGAPC6 336 36,250.48 8.24 31.23 89.67 -0.080
AhGAPC7 336 36,532.86 7.06 23.33 91.04 -0.109
AhGAPC8 339 36,855.10 7.02 27.16 90.27 -0.087
AhGAPCp1 416 44,435.84 9.00 32.74 89.30 -0.039
AhGAPCp2 345 37,141.40 6.61 29.29 86.75 -0.051
AhGAPCp3 440 47,250.28 9.06 33.15 89.52 -0.027
AhGAPCp4 416 44,479.96 9.04 31.08 89.06 -0.044

图6

AhGAPDH基因在染色体上的分布"

图7

AhGAPDH基因家族的聚类分析和保守基序、保守结构域及基因结构分析 A: 聚类分析; B: 保守基序分析; C: 保守结构域分析; D: 基因结构分析。Motif: 基序; UTR: 非编码区; CDS: 编码区序列。"

图8

AhGAPDH基因启动子区顺式作用元件预测分析"

图9

花生、大豆、油菜、拟南芥和烟草的GAPDH基因家族成员系统进化树"

[1] Chaves M M, Maroco J P, Pereira J S. Understanding plant responses to drought-from genes to the whole plant. Funct Plant Biol, 2003, 30: 239-264.
[2] Todaka D, Zhao Y, Yoshida T, Kudo M, Kidokoro S, Mizoi J, Kodaira K S, Takebayashi Y, Kojima M, Sakakibara H, et al. Temporal and spatial changes in gene expression, metabolite accumulation and phytohormone content in rice seedlings grown under drought stress conditions. Plant J, 2017, 90: 61-78.
[3] 任洪雷, 朱筱, 张丰屹, 张必弦, 王家军, 王金生, 吴俊江, 王广金, 邱丽娟. 干旱胁迫的影响及抗旱性研究进展. 分子植物育种, 网络首发[2024-01-19],http://kns.cnki.net/kcms/detail/46.1068.S.20240119.1548.002.
Ren H L, Zhu X, Zhang F Y, Zhang B X, Wang J J, Wang J S, Wu J J, Wang G J, Qiu L J. Effect of drought stress and research progress of drought resistance. Mol Plant Breed, Published online [2024-01-19], (in Chinese with English abstract).
[4] 万书波, 封海胜, 王秀贞. 花生营养成分综合评价与产业化发展战略研究. 花生学报, 2004, 33(2): 1-6.
Wan S B, Feng H S, Wang X Z. Synthetically evaluation on peanut nutrients and study on its industrialization development strategy. J Peanut Sci, 2004, 33(2): 1-6 (in Chinese with English abstract).
[5] 孙海艳, 侯乾, 董文召, 王晶珊, 刘立峰, 雷永. 我国花生品种发展现状. 中国种业, 2022, (7): 15-17.
Sun H Y, Hou Q, Dong W Z, Wang J S, Liu L F, Lei Y. Development status of peanut varieties in China. China Seed Ind, 2022, (7): 15-17 (in Chinese with English abstract).
[6] Ding L, Lu Z F, Gao L M, Guo S W, Shen Q R. Is nitrogen a key determinant of water transport and photosynthesis in higher plants upon drought stress? Front Plant Sci, 2018, 9: 1143.
doi: 10.3389/fpls.2018.01143 pmid: 30186291
[7] 顾学花, 孙莲强, 高波, 孙奇泽, 刘辰, 张佳蕾, 李向东. 施钙对干旱胁迫下花生生理特性、产量和品质的影响. 应用生态学报, 2015, 26: 1433-1439.
Gu X H, Sun L Q, Gao B, Sun Q Z, Liu C, Zhang J L, Li X D. Effects of calcium fertilizer application on peanut growth, physiological characteristics, yield and quality under drought stress. Chin J Appl Ecol, 2015, 26: 1433-1439 (in Chinese with English abstract).
[8] 武志刚, 武舒佳, 王迎春, 郑琳琳. 植物中钙依赖蛋白激酶(CDPK)的研究进展. 草业学报, 2018, 27(1): 204-214.
doi: 10.11686/cyxb2017211
Wu Z G, Wu S J, Wang Y C, Zheng L L. Advances in studies of calcium-dependent protein kinase (CDPK) in plants. Acta Pratac Sin, 2018, 27(1): 204-214 (in Chinese with English abstract).
[9] Kudla J, Batistic O, Hashimoto K. Calcium signals: the lead currency of plant information processing. Plant Cell, 2010, 22: 541-563.
[10] Yip Delormel T, Boudsocq M. Properties and functions of calcium-dependent protein kinases and their relatives in Arabidopsis thaliana. New Phytol, 2019, 224: 585-604.
doi: 10.1111/nph.16088 pmid: 31369160
[11] Zhu S Y, Yu X C, Wang X J, Zhao R, Li Y, Fan R C, Shang Y, Du S Y, Wang X F, Wu F Q, et al. Two calcium-dependent protein kinases, CPK4 and CPK11, regulate abscisic acid signal transduction in Arabidopsis. Plant Cell, 2007, 19: 3019-3036.
[12] Bin L H, Xu Z L, Chu Y Q, Yan Y, Nie X J, Song W N. Genome-wide analysis of calcium-dependent protein kinase (CDPK) family and functional characterization of TaCDPK25-U in response to drought stress in wheat. Environ Exp Bot, 2023, 209: 105277.
[13] Yu T F, Zhao W Y, Fu J D, Liu Y W, Chen M, Zhou Y B, Ma Y Z, Xu Z S, Xi Y J. Genome-wide analysis of CDPK family in foxtail millet and determination of SiCDPK24 functions in drought stress. Front Plant Sci, 2018, 9: 651.
[14] Li X D, Gao Y Q, Wu W H, Chen L M, Wang Y. Two calcium-dependent protein kinases enhance maize drought tolerance by activating anion channel ZmSLAC1 in guard cells. Plant Biotechnol J, 2022, 20: 143-157.
[15] Sirover M A. On the functional diversity of glyceraldehyde-3- phosphate dehydrogenase: biochemical mechanisms and regulatory control. Biochim Biophys Acta, 2011, 1810: 741-751.
[16] Rius S P, Casati P, Iglesias A A, Gomez-Casati D F. Characterization of Arabidopsis lines deficient in GAPC-1, a cytosolic NAD-dependent glyceraldehyde-3-phosphate dehydrogenase. Plant Physiol, 2008, 148: 1655-1667.
[17] Anoman A D, Muñoz-Bertomeu J, Rosa-Téllez S, Flores-Tornero M, Serrano R, Bueso E, Fernie A R, Segura J, Ros R.Plastidial glycolytic glyceraldehyde-3-phosphate dehydrogenase is an important determinant in the carbon and nitrogen metabolism of heterotrophic cells in Arabidopsis. Plant Physiol, 2015, 169: 1619-1637.
[18] 王芳, 陈巧红, 董乐, 王云, 朱国立, 许珊珊, 黄苹苹, 王建颖, 林娟. 蓖麻3-磷酸甘油醛脱氢酶的基因克隆及表达分析. 分子植物育种, 2018, 16: 7965-7974.
Wang F, Chen Q H, Dong L, Wang Y, Zhu G L, Xu S S, Huang P P, Wang J Y, Lin J. Cloning and expression analysis of glyceraldehyde-3-phosphate dehydrogenase from castor (Ricinus communis L.). Mol Plant Breed, 2018, 16: 7965-7974 (in Chinese with English abstract).
[19] Simkin A J, Alqurashi M, Lopez-Calcagno P E, Headland L R, Raines C A. Glyceraldehyde-3-phosphate dehydrogenase subunits A and B are essential to maintain photosynthetic efficiency. Plant Physiol, 2023, 192: 2989-3000.
doi: 10.1093/plphys/kiad256 pmid: 37099455
[20] Guo L, Devaiah S P, Narasimhan R, Pan X Q, Zhang Y Y, Zhang W H, Wang X M. Cytosolic glyceraldehyde-3-phosphate dehydrogenases interact with phospholipase Dδ to transduce hydrogen peroxide signals in the Arabidopsis response to stress. Plant Cell, 2012, 24: 2200-2212.
[21] Zeng L F, Deng R, Guo Z P, Yang S S, Deng X P. Genome-wide identification and characterization of Glyceraldehyde-3-phosphate dehydrogenase genes family in wheat (Triticum aestivum). BMC Genomics, 2016, 17: 240.
doi: 10.1186/s12864-016-2527-3 pmid: 26984398
[22] Vescovi M, Zaffagnini M, Festa M, Trost P, Lo Schiavo F, Costa A. Nuclear accumulation of cytosolic glyceraldehyde-3-phosphate dehydrogenase in cadmium-stressed Arabidopsis roots. Plant Physiol, 2013, 162: 333-346.
doi: 10.1104/pp.113.215194 pmid: 23569110
[23] Zhao X C, Wang J, Xia N, Qu Y W, Zhan Y H, Teng W L, Li H Y, Li W B, Li Y G, Zhao X, et al. Genome-wide identification and analysis of glyceraldehyde-3-phosphate dehydrogenase family reveals the role of GmGAPDH14 to improve salt tolerance in soybean (Glycine max L.). Front Plant Sci, 2023, 14: 1193044.
[24] 石运庆, 王建, 苗华荣, 胡晓辉, 陈静. 不同花生品种芽期抗旱性筛选及其田间验证. 山东农业科学, 2015, 47(2): 34-37.
Shi Y Q, Wang J, Miao H R, Hu X H, Chen J. Drought resistance screening of different peanut varieties at germination stage and its field validation. Shandong Agric Sci, 2015, 47(2): 34-37 (in Chinese with English abstract).
[25] 王彩, 万勇善, 刘风珍, 张昆. 苗期PEG渗透胁迫条件下花生品种抗旱性的研究. 山东农业科学, 2018, 50(6): 65-71.
Wang C, Wan Y S, Liu F Z, Zhang K. Study on drought resistance of peanut varieties at seedling stage under PEG-6000 osmotic stress. Shandong Agric Sci, 2018, 50(6): 65-71 (in Chinese with English abstract).
[26] Jiang C J, Li X L, Zou J X, Ren J Y, Jin C Y, Zhang H, Yu H Q, Jin H. Comparative transcriptome analysis of genes involved in the drought stress response of two peanut (Arachis hypogaea L.) varieties. BMC Plant Biol, 2021, 21: 64.
[27] Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R. 1000 Genome Project Data Processing Subgroup: the sequence alignment/map format and SAMtools. Bioinformatics, 2009, 25: 2078-2079.
doi: 10.1093/bioinformatics/btp352 pmid: 19505943
[28] Robinson M D, McCarthy D J, Smyth G K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 2010, 26: 139-140.
doi: 10.1093/bioinformatics/btp616 pmid: 19910308
[29] Chen S F, Zhou Y Q, Chen Y R, Gu J. Fastp: an ultra-fast all-in- one FASTQ preprocessor. Bioinformatics, 2018, 34: i884-i890.
[30] Kim D, Paggi J M, Park C, Bennett C, Salzberg S L. Graph-based genome alignment and genotyping with HISAT2 and HISAT- genotype. Nat Biotechnol, 2019, 37: 907-915.
[31] Chen C J, Chen H, Zhang Y, Thomas H R, Frank M H, He Y H, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13: 1194-1202.
doi: S1674-2052(20)30187-8 pmid: 32585190
[32] Yang S, Wang J G, Tang Z H, Li Y, Zhang J L, Guo F, Meng J J, Cui F, Li X G, Wan S B. Calcium/calmodulin modulates salt responses by binding a novel interacting protein SAMS1 in peanut (Arachis hypogaea L.). Crop J, 2023, 11: 21-32.
doi: 10.1016/j.cj.2022.06.007
[33] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 2001, 25: 402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609
[34] Potter S C, Luciani A, Eddy S R, Park Y, Lopez R, Finn R D. HMMER web server: 2018 update. Nucleic Acids Res, 2018, 46: W200-W204.
[35] Bailey T L, Johnson J, Grant C E, Noble W S. The MEME suite. Nucleic Acids Res, 2015, 43: W39-W49.
[36] Spitz F, Furlong E E M. Transcription factors: from enhancer binding to developmental control. Nat Rev Genet, 2012, 13: 613-626.
doi: 10.1038/nrg3207 pmid: 22868264
[37] Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol, 2016, 33: 1870-1874.
doi: 10.1093/molbev/msw054 pmid: 27004904
[38] Letunic I, Bork P. Interactive tree of life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res, 2021, 49: W293-W296.
[39] Deng Y H, Chen Q J, Qu Y Y. Protein S-acyl transferase GhPAT27 was associated with Verticillium wilt resistance in cotton. Plants, 2022, 11: 2758.
[40] Li Q Z, Hu T, Lu T J, Yu B, Zhao Y.Calcium-dependent protein kinases CPK3/4/6/11 and 27 respond to osmotic stress and activate SnRK2s in Arabidopsis. Dev Cell, 2025, 60: 1423-1438.
[41] 刘小龙, 李霞, 钱宝云, 唐玉婷. 植物体内钙信号及其在调节干旱胁迫中的作用. 西北植物学报, 2014, 34: 1927-1936.
Liu X L, Li X, Qian B Y, Tang Y T. Ca2+ signal transduction and its regulation role under drought stress in plant. Acta Bot Boreali-Occident Sin, 2014, 34: 1927-1936 (in Chinese with English abstract).
[42] Morigasaki S, Shimada K, Ikner A, Yanagida M, Shiozaki K. Glycolytic enzyme GAPDH promotes peroxide stress signaling through multistep phosphorelay to a MAPK cascade. Mol Cell, 2008, 30: 108-113.
doi: 10.1016/j.molcel.2008.01.017 pmid: 18406331
[43] Kobayashi M, Ohura I, Kawakita K, Yokota N, Fujiwara M, Shimamoto K, Doke N, Yoshioka H. Calcium-dependent protein kinases regulate the production of reactive oxygen species by potato NADPH oxidase. Plant Cell, 2007, 19: 1065-1080.
doi: 10.1105/tpc.106.048884 pmid: 17400895
[44] Suzuki Y, Ishiyama K, Sugawara M, Suzuki Y, Kondo E, Takegahara-Tamakawa Y, Yoon D K, Suganami M, Wada S, Miyake C, et al. Overproduction of chloroplast glyceraldehyde-3- phosphate dehydrogenase improves photosynthesis slightly under elevated [CO2] conditions in rice. Plant Cell Physiol, 2021, 62: 156-165.
doi: 10.1093/pcp/pcaa149 pmid: 33289530
[45] 李敏, 伍国强, 魏明, 刘晨. 植物CDPK在响应逆境胁迫中的作用及机制. 生物工程学报, 2024, 40: 3337-3359.
Li M, Wu G Q, Wei M, Liu C. Functions and mechanisms of CDPKs in plant responses to abiotic stress. Chin J Biotechnol, 2024, 40: 3337-3359 (in Chinese with English abstract).
[46] Zou J J, Li X D, Ratnasekera D, Wang C, Liu W X, Song L F, Zhang W Z, Wu W H. Arabidopsis CALCIUM-DEPENDENT PROTEIN KINASE8 and CATALASE3 function in abscisic acid-mediated signaling and H2O2 homeostasis in stomatal guard cells under drought stress. Plant Cell, 2015, 27: 1445-1460.
[47] Zhu C G, Jing B Y, Lin T, Li X Y, Zhang M, Zhou Y H, Yu J Q, Hu Z J. Phosphorylation of sugar transporter TST2 by protein kinase CPK27 enhances drought tolerance in tomato. Plant Physiol, 2024, 195: 1005-1024.
doi: 10.1093/plphys/kiae124 pmid: 38431528
[1] 尹雨萌, 王雁楠, 康志河, 乔守晨, 卞倩倩, 李亚蔚, 曹郭郑, 赵国瑞, 徐丹丹, 杨育峰. 甘薯谷胱甘肽S-转移酶基因IbGSTU7的克隆及功能分析[J]. 作物学报, 2025, 51(7): 1736-1746.
[2] 李福媛, 杨奕, 马继琼, 许明辉, 林良斌, 孙一丁. 水稻OsPUB4基因克隆、激素诱导表达分析与互作蛋白筛选[J]. 作物学报, 2025, 51(6): 1690-1700.
[3] 金欣欣, 宋亚辉, 苏俏, 杨永庆, 李玉荣, 王瑾. 冀花系列高油酸花生抗旱性鉴定与综合评价[J]. 作物学报, 2025, 51(3): 797-811.
[4] 王语新, 陈天羽, 翟红, 张欢, 高少培, 何绍贞, 赵宁, 刘庆昌. 甘薯激酶基因IbHT1的克隆及抗旱性功能鉴定[J]. 作物学报, 2025, 51(2): 301-311.
[5] 刘波, 池明, 曹梦琦, 唐达, 杨恒照, 张卫华, 薛聪. 过表达马铃薯StuPPO9基因对烟草抗旱能力的影响[J]. 作物学报, 2024, 50(9): 2237-2247.
[6] 张小芳, 朱琪, 华芸堰, 贾黎惠莹, 邱士优, 陈宇杰, 马涛, 丁沃娜. 水稻OsCYP22互作蛋白的筛选及验证[J]. 作物学报, 2024, 50(6): 1628-1634.
[7] 朱旭东, 杨兰锋, 陈媛媛, 侯泽豪, 罗旖柔, 熊泽浩, 方正武. 甜荞FeSGT1基因克隆及抗旱功能解析[J]. 作物学报, 2023, 49(6): 1573-1583.
[8] 徐子寅, 于晓玲, 邹良平, 赵平娟, 李文彬, 耿梦婷, 阮孟斌. 木薯MYB转录因子基因MeMYB60表达特征分析及其互作蛋白筛选[J]. 作物学报, 2023, 49(4): 955-965.
[9] 孟雨, 田文仲, 温鹏飞, 丁志强, 张学品, 贺利, 段剑钊, 刘万代, 郭天财, 冯伟. 基于不同发育阶段协同的小麦品种抗旱性综合评判[J]. 作物学报, 2023, 49(2): 570-582.
[10] 周文期, 强晓霞, 李思雨, 王森, 卫万荣. 水稻卷叶等位突变体e202的鉴定和基因精细定位[J]. 作物学报, 2023, 49(11): 3029-3041.
[11] 沈庆庆, 王天菊, 王俊刚, 张树珍, 赵雪婷, 何丽莲, 李富生. 割手密转录因子SsWRKY1提高甘蔗品种抗旱能力的功能鉴定[J]. 作物学报, 2023, 49(10): 2654-2664.
[12] 王云奇, 高福莉, 李傲, 郭同济, 戚留冉, 曾寰宇, 赵建云, 王笑鸽, 高国英, 杨佳鹏, 白金泽, 马亚欢, 梁月馨, 张睿. 小麦花后穗部温度变化规律及其与产量的关系[J]. 作物学报, 2022, 48(9): 2400-2408.
[13] 李佩婷, 赵振丽, 黄潮华, 黄国强, 徐良年, 邓祖湖, 张玉, 赵新旺. 基于转录组及WGCNA的甘蔗干旱响应调控网络分析[J]. 作物学报, 2022, 48(7): 1583-1600.
[14] 王兴荣, 李玥, 张彦军, 李永生, 汪军成, 徐银萍, 祁旭升. 青稞种质资源成株期抗旱性鉴定及抗旱指标筛选[J]. 作物学报, 2022, 48(5): 1279-1287.
[15] 张海燕, 解备涛, 姜常松, 冯向阳, 张巧, 董顺旭, 汪宝卿, 张立明, 秦桢, 段文学. 不同抗旱性甘薯品种叶片生理性状差异及抗旱指标筛选[J]. 作物学报, 2022, 48(2): 518-528.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!