欢迎访问作物学报,今天是

作物学报 ›› 2007, Vol. 33 ›› Issue (04): 652-656.

• 研究论文 • 上一篇    下一篇

水稻穗结构的定量特征与虚拟表达的初步研究

石春林1,2;朱艳1,*;汤亮1;曹卫星1   

  1. 1南京农业大学/江苏省信息农业高技术研究重点实验室/农业部作物生长调控重点开放实验室,江苏南京210095; 2江苏省农业科学院农业资源与环境研究所,江苏南京210014
  • 收稿日期:2005-12-22 修回日期:1900-01-01 出版日期:2007-04-12 网络出版日期:2007-04-12
  • 通讯作者: 朱艳

Quantitative Analysis and Primary Simulation on Rice Panicle Structure

SHI Chun-Lin12,ZHU Yan1*,TANG Liang1,CAO Wei-Xing1   

  1. 1 Hi-Tech Key Laboratory of Information Agriculture of Jiangsu Province / Key Laboratory of Crop Growth Regulation of Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, Jiangsu; 2 Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
  • Received:2005-12-22 Revised:1900-01-01 Published:2007-04-12 Published online:2007-04-12
  • Contact: ZHU Yan

摘要:

连续观察了不同品种和不同氮肥处理条件下水稻穗结构,并对其进行了定量分析及参数化处理。结果表明,一次枝梗长与穗长之比随穗轴节位呈两次函数变化,不同品种类型之间的参数变异较大;一次枝梗上的二次枝梗数与一次枝梗长度呈线性变化;一次枝梗基本均匀着生于穗轴上,一次枝梗和二次枝梗的节间距离变化不大。进一步利用水稻生长模型输出的穗粒数和一次枝梗数分析了二次枝梗的空间分布。最后结合上述结构特征,进行了水稻穗结构的计算机模拟。

关键词: 水稻, 结构, 虚拟

Abstract:

Visual simulation on crop architecture can help readers to better understand crop growth processes and analyze the relationship between architecture and function. Panicle of rice is the critical organ for yield formation. Its architecture depends deeply on ecological environment and cultivation methods, and most crop growth models on rice can simulate the effect of ecological environment and cultivation methods on yield components, such as panicle number, grain number per panicle, seed-setting percentage, 1000-grain weight, and number of primary branch. Therefore combination with the outputs of crop growth model, developing architecture model will improve its applicability. On the field experiments with different cultivars and nitrogen applications, we analyzed the quantitative characteristics of panicle architecture. The results were as follows: The ratio of primary branch to panicle in length could be characterized by a quadratic equation expressed in terms of nodal number of branch on panicle axis; and these was a linear relationship between the number of secondary branch and the length of primary branch; the primary branch grew uniformly on panicle axis and the nodal distances of primary and secondary branch also had no significant difference. Furthermore, based on the stability of spikelet number of primary branch and secondary branch, the outputs of growth model, such as grain number per panicle and the number of primary branch, were used to analyze total number of secondary branch per panicle and its space distribution. Thus panicle architecture could be described clearly. Then the model of total number of secondary branch per panicle and panicle architecture were validated with independent data. The results indicate that the simulated values of total number of secondary branch per panicle are accordant with the observed values, and the simulated panicle architectures are similar with the observed. Panicle architecture can be simulated visually under different conditions.

Key words: Rice, Panicle, Architecture, Virtual

[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[3] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[4] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[5] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[6] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[7] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[8] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[9] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[10] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[11] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[12] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[13] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[14] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[15] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!