欢迎访问作物学报,今天是

作物学报 ›› 2007, Vol. 33 ›› Issue (07): 1135-1140.

• 研究论文 • 上一篇    下一篇

影响农杆菌介导旱稻转化效率主要因素的研究

石云鹭1;丁在松2;张彬3;张桂芳4;赵明2,*   

  1. 1 中国农业大学农学与生物技术学院, 北京100094; 2 中国农业科学院作物科学研究所, 北京100081; 3山西农业大学, 山西太谷030801;4 北京师范大学学报(自然科学版)编辑部, 100875
  • 收稿日期:2006-10-23 修回日期:1900-01-01 出版日期:2007-07-12 网络出版日期:2007-07-12
  • 通讯作者: 赵明

Optimization of the Agrobacterium-Mediated Transformation System on Upland Rice

SHI Yun-Lu1,DING Zai-Song2,ZHANG Bin3,ZHANG Gui-Fang4,ZHAO Ming2*   

  1. 1 College of Agronomy and Biotechnology, China Agriculture University, Beijing 100094; 2 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081; 3 Shanxi Agriculture University, Taigu 030801, Shanxi; 4 Editorial Department of Journal of Beijing Normal University (Natural Sciences), Beijing 100875, China)
  • Received:2006-10-23 Revised:1900-01-01 Published:2007-07-12 Published online:2007-07-12
  • Contact: ZHAO Ming

摘要:

针对旱稻在基因工程中转化效率低这一难题,以4个旱稻品种为对象,对农杆菌介导的遗传转化的各个步骤进行了优化试验,结果表明NB(N6 macro elements;B5 micro elements and vitamins;proline 500 mg L-1,L-Glutamine 500 mg L-1,casamino acid 300 mg L-1,sucrose 30 g L-1,2,4- D 2 mg L-1,agar 8 g L-1,pH 5.8)培养基适合于旱稻愈伤组织诱导;AAM-AS (Na2HPO4·2H2O 339.2 mg L-1; KCl 2.95 g L-1; MgSO4·7H2O 500 mg L-1; CaCl2 114.4 mg L-1; MnSO4·4H2O 10 mg L-1; H3BO3 3 mg L-1; ZnSO4·7H2O 2 mg L-1; KI 0.75 mg L-1; NaMO4 0.25 mg L-1;CuSO4·5H2O 0.0387 mg L-1;CoCl2·6H2O 0.025 mg L-1; VB1 0.5 mg L-1;VB6 0.5 mg L-1;烟酸0.5 mg L-1;肌醇100 mg L-1; 甘氨酸7.5 mg L-1;精氨酸174 mg L-1;谷氨酰铵876 mg L-1; casamino acid 500 mg L-1; 蔗糖68.5 g L-1; 葡萄糖35 g L-1; AS 200 µmol L-1 pH 5.2)是农杆菌的最佳重悬液;对NPT(new plant type, NPT)这种侵染后易水渍化品种, 滤纸法共培养可将其抗性愈伤发生率提高15倍以上;筛选及分化前对抗性愈伤组织进行2 d的干燥培养可显著加快愈伤组织分化进程;在分化培养基中加入AgNO3有助于提高分化率;而短期高浓度的CuSO4处理可显著提高分化率。利用此体系获得了一大批PCR鉴定阳性的转基因株; Southern blot检测证明外源基因大多数以单拷贝形式整合在转基因植株中。

关键词: 旱稻, 农杆菌转化, 共培养, 分化

Abstract:

Agrobacterium mediated transformation has been used very successfully in some monocot plant such as rice (Oryza sativa L.) and maize (Zea mays L.); by which the transgenic plants obtain stronger resistance or better characters. But the efficiency of Agrobacterium mediated transformation system is still not so high as our expectation. Upland rice is a variety of rice (Oryza sativa L.), which has many good characters, such as drought resistance, and tolerance to sterile soil. Upland rice has been praised as one of the new source of food supplies in the 21st century in China. However, studies on the Agrobacterium mediated transformation system of upland rice are less compared with these of rice, and a lot of problems that affected the transformation efficiency should be solved. So setting up an effective transformation system of upland rice is still a challenge to investigators. Several important factors affecting upland rice transformation mediated by Agrobacterium were investigated with 4 upland rice cultivars.
In this paper callus induced from mature embryos of upland rice seeds were used mediated as explants to study the factors affecting the transformation rate. Callus were collected in a sterile trigonal bottle, Agrobacterium suspension was then added to the bottle, and vortexed for 30 s, followed by a 20 min of soaking in the bacteria solution. The callus were then transfered on co-cultivation medium(C-C1 or C-C2) in Petri plates and cultured in the dark for 3 days. After washed with sterile water, the explants were then put onto SX medium containing hygromycin for selection. After 6–8 weeks, surviving callus were transferred to differentiation medium. Then, the induced seedlings in 4–5 centimeters long were transferred onto root-inducing medium Finally, they were transplanted into soil when the roots had formed, and identified by PCR and Southern blot.
The transformation rate was affected by five factors in this process. NB medium was suitable for callus induction and subculture. Re-suspending the strain by AAM-AS medium before transformation could improve the resistant callus rate significantly. After infected by the strain, the callus were put on the 2 layers of sterile filter papers (d=12 cm) absorbed 4 mL C-C2 medium for co-cultivation, instead of being on agar medium, which could improve the resistant callus rate of NPT from 2% to 31.7%. Before selection and regeneration, desiccation for 2 days on sterilized filter papers could increase the resistant callus rate. Adding 10 mg L-1AgNO3 or 8 mg L-1CuSO4 into the differentiation medium could improve the regeneration rate, especially for the callus subculturd for 2 months or longer. many putative transgenic plants identified by PCR were acquired by using this transformation procedure, and southern blot analysis showed the target gene integrated in most transgenic plants just by single copy.

Key words: Upland rice, Agrobacterium mediated transformation, Co-culture, Differentiation

[1] 赵改会, 李书宇, 詹杰鹏, 李晏斌, 师家勤, 王新发, 王汉中. 甘蓝型油菜角果数突变体基因的定位及候选基因分析[J]. 作物学报, 2022, 48(1): 27-39.
[2] 王翠娟, 柴沙沙, 史春余, 朱红, 谭中鹏, 季杰, 任国博. 铵态氮素促进甘薯块根形成的解剖特征及其IbEXP1基因的表达[J]. 作物学报, 2021, 47(2): 305-319.
[3] 李新,肖麓,李麟芳,杜德志. 芥菜型多室与二室油菜花芽分化过程的比较分析[J]. 作物学报, 2019, 45(5): 705-713.
[4] 张安宁,刘毅,王飞名,谢岳文,孔德艳,聂元元,张分云,毕俊国,余新桥,刘国兰,罗利军. 节水抗旱稻恢复系的抗褐飞虱分子标记辅助选育及抗性评价[J]. 作物学报, 2019, 45(11): 1764-1769.
[5] 赵佩,腾丽杰,王轲,杜丽璞,任贤,佘茂云,叶兴国. 小麦TaVIP1家族基因克隆、分子特性及功能分析[J]. 作物学报, 2017, 43(02): 201-209.
[6] 谭炎宁,孙学武,袁定阳,孙志忠,余东,何强,段美娟,邓华凤,袁隆平. 水稻单叶独立转绿型黄化突变体grc2的鉴定与基因精细定位[J]. 作物学报, 2015, 41(06): 831-837.
[7] 王翠娟,史春余,王振振,柴沙沙,柳洪鹃,史衍玺. 覆膜栽培对甘薯幼根生长发育、块根形成及产量的影响[J]. 作物学报, 2014, 40(09): 1677-1685.
[8] 马海珍,朱伟伟,王启柏,王国良,李新征,亓宝秀. 玉米幼苗不同部位的再生能力和某些影响因子[J]. 作物学报, 2014, 40(02): 313-319.
[9] 孟佳佳,董树亭,石德杨,张海燕. 玉米雌穗分化与籽粒发育及败育的关系[J]. 作物学报, 2013, 39(05): 912-918.
[10] 王婷, 暨淑仪, 吴鸿. 油菜角果开裂区结构分化对果实开裂的作用[J]. 作物学报, 2012, 38(03): 563-569.
[11] 张美玲, 宋宪亮, 孙学振, 王振林, 赵庆龙, 李宗泰, 姬红, 许晓龙. 彩色棉纤维分化及色素沉积过程观察[J]. 作物学报, 2011, 37(07): 1280-1288.
[12] 丁在松, 王春艳, 关东明, 赵凤悟, 赵明. 旱稻×稗草杂交后代YF2-1光合作用气体交换、叶绿素荧光和抗氧化酶系统对渗透胁迫的响应[J]. 作物学报, 2011, 37(05): 876-881.
[13] 魏凤桐, 陶洪斌, 王璞. 旱稻297非结构性碳水化合物的生产与产量构成因子的关系[J]. 作物学报, 2010, 36(12): 2135-2142.
[14] 陈军营,马平安,赵一丹,朱雪萍,崔琰,张艳敏,陈新建*. 小麦成熟胚脱分化过程中生长素相关基因的表达分析[J]. 作物学报, 2009, 35(10): 1798-1805.
[15] 许东林;周国辉;沈万宽;邓海华. 侵染甘蔗的高粱花叶病毒遗传多样性分析[J]. 作物学报, 2008, 34(11): 1916-1920.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!