欢迎访问作物学报,今天是

作物学报 ›› 2014, Vol. 40 ›› Issue (02): 313-319.doi: 10.3724/SP.J.1006.2014.00313

• 耕作栽培·生理生化 • 上一篇    下一篇

玉米幼苗不同部位的再生能力和某些影响因子

马海珍,朱伟伟,王启柏,王国良,李新征*,亓宝秀*   

  1. 山东农业大学作物生物学国家重点实验室, 山东泰安 271018
  • 收稿日期:2013-04-11 修回日期:2013-08-16 出版日期:2014-02-12 网络出版日期:2013-12-03
  • 通讯作者: 李新征,E-mail: lxz@sdau.edu.cn; 亓宝秀,E-mail: qbx126@sdau.edu.cn
  • 基金资助:

    本研究由国家自然科学基金项目(30970222, 31170233)资助。

Regeneration Capacity and Some Affecting Factors of Different Parts of Young Seedlings of Maize (Zea mays L.)

MA Hai-Zhen,ZHU Wei-Wei,WANG Qi-Bai,WANG Guo-Liang,LI Xin-Zhen*,QI Bao-Xiu*   

  1. State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China
  • Received:2013-04-11 Revised:2013-08-16 Published:2014-02-12 Published online:2013-12-03
  • Contact: 李新征,E-mail: lxz@sdau.edu.cn; 亓宝秀,E-mail: qbx126@sdau.edu.cn

摘要:

为建立以玉米幼苗为外植体的高效再生体系, 克服幼胚取材的限制, 本研究选取萌发3 d的玉米幼苗作为供体材料, 研究其不同部位的再生能力。分别研究了种子萌发时的光照条件, N6培养基中Ca2+浓度, 6个不同基因型对芽尖和根尖愈伤组织诱导率和分化率的影响。结果显示, 黑暗条件下萌发的幼苗, 其芽尖和根尖更适合作为外植体, 诱导培养基中添加终浓度为5 mmol L-1CaCl2 时的愈伤组织诱导率最高, 不同基因型的玉米愈伤组织的诱导率和分化率存在差异, 但影响趋势相同, 且同一基因型的不同外植体形成的愈伤组织形态相似, 分化率也相似。最后结论是黑暗条件下萌发3 d的齐319和鲁原92的幼苗, 可以代替玉米幼胚作为外植体用于组织培养研究。

关键词: 玉米幼苗, 芽尖, 根尖, 愈伤组织诱导, 分化

Abstract:

Currently, immature embryo is the most widely used explant for maize regeneration and transformation. However, this material source is restricted by geographical condition, developmental stages and the growing season. Here, we isolated different parts the of three-day-old seedlings to study their regeneration capacity, aiming to establish an alternative efficient regeneration system for maize. Using the shoot tips and primary root of three-day-old seedlings of maize germinated in dark and light as explants, the effects of illumination, genotype, and different concentration of Ca2+ in the induction medium on the primary callus induction rate and seedling differentiation rate were analysed. The result showed that shoot tips and the root tips derived from seedlings germinated in the dark were better source materials. Root materials isolated from the mature zone of the primary root could not be weed to induce primary callus. The primary callus induction rate was the highest when 5 mmol L-1 of Ca2+ was added in the induction medium. The callus induction and differentiation rates of both explants from the six different genotypes were very different. However, the effect of the genotype on primary callus induction and differentiation rates from the two explants was consistent. The differentiation rate and the morphology of the callus from the two explants of the same genotype were also similar. From above, we propose that the 3-day-old seedlings of Qi319 and Luyuan 92 germinated in the dark have the potential to replace the immature embryos for maize tissue culture in the future.

Key words: Maize (Zea mays L.) seedling, Shoot tips, Root tips, Callus induction, Differentiation

[1]王昌涛, 杨爱国, 高树仁, 赵琦, 赵玉锦, 张世煌. 不同外植体愈伤组织诱导及植株再生的研究. 沈阳农业大学学报, 2005, 36: 515–518



Wang C T, Yang A G, Gao S R, Zhao Q, Zhao Y J, Zhang S H. Studies on inducement of callus different explants of maize and the plant regeneration. J Shenyang Agric Univ, 2005, 36: 515–518 (in Chinese with English abstract)



[2]James C. Global Review of Commercialized Transgenic Crops. ISAAA (International Service for the Acquisition of Agri-biotech) Briefs No. 30-2003. Ithaca, NY, USA: ISAAA, 2003



[3]张立军, 赵成昊, 葛 超. 玉米再生体系建立及其影响因素的研究. 玉米科学, 2008, 16(2): 77–79



Zhang L J, Zhao C H, Ge C. Regeneration system and influencing factors of maize. J Maize Sci, 2008, 16(2): 77–79 (in Chinese with English abstract)



[4]Green C E, Phillips R L. Plant regeneration from tissue cultures of maize. Crop Sci, 1975, 15: 417–421



[5]Pareddy D R, Petolino J F. Somatic embryogenesis and plant regeneration from immature inflorescences of several elite inbreds of maize. Plant Sci, 1990, 67: 211–219



[6]Ting Y C, Yu M, Zheng W Z. Improved anther culture of maize. Plant Sci Lett, 1981, 23: 139–145



[7]Rhodes C A, Green C E, Phillips R L. Factors affecting tissue culture initiation from maize tassels. Plant Sci, 1986, 46: 225–232



[8]Songstad D D, Peterson W L, Armstrong C L. Establishment of friable embryogenic (typeII) callus from immature tassels of Zea mays (Poaceae). Am J Bot, 1992, 79: 761–764



[9]李国圣, 张卿伟, 张举仁, 毕玉平, 单雷. 玉米丛生芽体系的建立及抗除草剂转基因植株再生. 中国科学: C辑, 2001, 31: 385–391



Li G S, Zhang Q W, Zhang J R, Bi Y P, Shan L. Establishment of tuft buds system and regeneration of transgenic maize plants with resistance to herbicide. Sci China: Series C, 2001, 31: 385–391 (in Chinese with English abstract)



[10]Zhong H, Srinivasan C, Sticklen M B. In vitro morphogenesis of corn (Zea mays L.): II. Differentiation of ear and tassel clusters from cultured shoot apices and immature inflorescences. Planta, 1992, 187: 490–497



[11]Zhang S, Williams C R, Jackson D, Lemaux P G. Expression of CDC2ZM and KONTTED1 during in-vitro axillary shoot meristem proliferation and adventitious shoot meristem formation in maize (Zea mays L.) and barely (Hordeum vulgare L.). Planta, 1998, 204: 542–549



[12]Sidorov V, Gilbertson L, Addae P, Duncan D. Agrobacterium-mediated transformation of seedling-derived maize callus. Plant Cell Rep, 2006, 25: 320–328



[13]Conger B V, Novak F J, Afza R, Erdelsky K. Somatic embryogenesis from cultured leaf segments of Zea mays. Plant Cell Rep, 1987, 6: 345–347



[14]Ahmadabadi M, Ruf S, Bock R. A leaf based regeneration and transformation system for maize (Zea mays L.). Transgenic Res, 2007, 16: 437–448



[15]Murashige T, Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant, 1962, 15: 473-497



[16]Chu C C, Wang C C, Sun C S, Hsu C, Yin K C, Chu Y C, Bi F Y. Establishment of an efficient medium for anther culture of rice through comparative experiments on the nitrogen sources. Sci Sin, 1975, 5: 659–668



[17]付凤玲, 李晚忱, 荣廷昭. N6培养基添加钙和烯效唑对玉米幼胚培养的作用. 作物学报, 2005, 31: 634–639



Fu F L, Li W C, Rong T Z. Effect of Ca2+ and uniconazole appended in N6 medium on immature embyros culture in maize. Acta Agron Sin, 2005, 31(5): 634–639 (in Chinese with English abstract)



[18]Armstrong C L, Green C E. Establishment and maintenance of friable, embryogenic maize callus and the involvement of L-proline. Planta, 1985, 164: 207–214



[19]Bajaj Y P S. Plant protoplast and genetic engineering. In: Bajaj Y P S, ed. Biotechnology in Agriculture and Forestry. Berlin, Heidelberg, New York: Springer, 1994, 29: 3–23



[20]沈军队. 玉米幼苗两种形态建成中3个生化指标的比较研究. 石河子大学学报, 2000, 9(4): 3



Shen J D. The comparative study of three biochemical indicators of the two morphogenesis in maize seedlings. J Shihezi Univ, 2000, 9(4): 3 (in Chinese with English abstract)



[21]张东向, 张崇浩, 李杰芬. 玉米叶片胚性愈伤组织诱导及其与内源IAA和ABA关系的初步研究. 作物学报, 2000, 26: 195-199



Zhang D X, Zhang C H, Li J F. Embryogenic callus induction of maize leaves and related to endogenous IAA and ABA. Acta Agron Sin, 2000, 26: 195–199 (in Chinese with English abstract)



[22]崔凯荣, 邢更生, 周功克, 刘新民, 王亚馥. 植物激素对体细胞胚胎发生的诱导与调节. 遗传, 2000, 22: 349–354



Cui K R, Xing G S, Zhou G K, Liu X M,Wang Y F. The induced and regulatory effects of plant hormones in somatic embryogenesis. Hereditas, 2000, 22(5): 349–354 (in Chinese with English abstract)



[23]Huang X Q, Wei Z M. High-frequency plant regeneration through callus initiation from mature embryos of maize (Zea mays L.). Plant Cell Rep, 2004, 22: 793–800



[24]孙红炜, 尚佑芬, 杨崇良, 赵玖华, 路兴波, 王升吉. 影响玉米愈伤组织诱导和植株再生的有关因素研究. 山东农业科学, 2002, (6): 30–31



Sun H W, Shang Y F, Yang C L, Zhao J H, Lu X B, Wang S J. Relevant factors research about influence embryogenic callus induction and plantlet regeneration of maize. Shandong Agric Sci, 2002, (6): 30–31 (in Chinese with English abstract)



[25]陈靖, 董浩, 马海珍, 刘江, 亓宝秀, 李新征, 董树亭. 玉米幼胚和源于幼苗的幼嫩叶段愈伤诱导及其植株再生的比较. 中国农业科学, 2011, 44: 3676–3682



Cheng J, Dong H, Ma H Z, Liu J, Qi B X, Li X Z, Dong S T. Comparison of induction and regeneration of embryogenic callus initiated from immature embryos and seedling-derived young leaf segments of maize. Sci Agric Sin, 2011, 44: 3676–3682 (in Chinese with English abstract)



[26]陈靖, 孙全喜, 马海珍, 刘江, 亓宝秀, 李新征, 董树亭. 源于玉米幼苗的幼嫩叶段愈伤诱导及其植株再生的研究. 玉米科学, 2012, 20(1): 39–43



Chen J, Sun Q X, Ma H Z, Liu J, Qi B X, Li X Z, Dong S T. Research on induction and regeneration of callus initiated from seedling-derived young leaf segments of maize. J Maize Sci, 2012, 20(1): 39–43 (in Chinese with English abstract)



[27]石太渊, 杨立国, 杜艳艳. 玉米体细胞培养中不同基因型和外植体的反应. 国外农学-杂粮作物, 1999, 19(5): 11–14



Shi T Y, Yang L G, Du Y Y. Different genotypes and explants in response to maize somatic cell culture. Foreign Agric-Rain Fed Crops, 1999, 19(5): 11–14 (in Chinese with English abstract)

[1] 赵改会, 李书宇, 詹杰鹏, 李晏斌, 师家勤, 王新发, 王汉中. 甘蓝型油菜角果数突变体基因的定位及候选基因分析[J]. 作物学报, 2022, 48(1): 27-39.
[2] 王翠娟, 柴沙沙, 史春余, 朱红, 谭中鹏, 季杰, 任国博. 铵态氮素促进甘薯块根形成的解剖特征及其IbEXP1基因的表达[J]. 作物学报, 2021, 47(2): 305-319.
[3] 李新,肖麓,李麟芳,杜德志. 芥菜型多室与二室油菜花芽分化过程的比较分析[J]. 作物学报, 2019, 45(5): 705-713.
[4] 杨青华,郑博元,李蕾蕾,贾双杰,韩心培,郭家萌,王泳超,邵瑞鑫. 外源NO供体对水分亏缺下玉米叶片碳同化关键酶及抗氧化系统的影响[J]. 作物学报, 2018, 44(9): 1393-1399.
[5] 谭炎宁,孙学武,袁定阳,孙志忠,余东,何强,段美娟,邓华凤,袁隆平. 水稻单叶独立转绿型黄化突变体grc2的鉴定与基因精细定位[J]. 作物学报, 2015, 41(06): 831-837.
[6] 王翠娟,史春余,王振振,柴沙沙,柳洪鹃,史衍玺. 覆膜栽培对甘薯幼根生长发育、块根形成及产量的影响[J]. 作物学报, 2014, 40(09): 1677-1685.
[7] 孟佳佳,董树亭,石德杨,张海燕. 玉米雌穗分化与籽粒发育及败育的关系[J]. 作物学报, 2013, 39(05): 912-918.
[8] 王婷, 暨淑仪, 吴鸿. 油菜角果开裂区结构分化对果实开裂的作用[J]. 作物学报, 2012, 38(03): 563-569.
[9] 徐田军, 董志强, 兰宏亮, 裴志超, 高娇, 解振兴. 低温胁迫下聚糖萘合剂对玉米幼苗光合作用和抗氧化酶活性的影响[J]. 作物学报, 2012, 38(02): 352-359.
[10] 张美玲, 宋宪亮, 孙学振, 王振林, 赵庆龙, 李宗泰, 姬红, 许晓龙. 彩色棉纤维分化及色素沉积过程观察[J]. 作物学报, 2011, 37(07): 1280-1288.
[11] 韩晓峰,陶丽莉,殷桂香,刘晓蕾,杜丽璞,魏亦勤,晏月明,叶兴国. 基因型和环境条件对小麦花药培养效果的影响[J]. 作物学报, 2010, 36(07): 1209-1215.
[12] 詹洁,寇瑞杰,李创珍,何虎翼,何龙飞. 铝胁迫对花生根尖线粒体膜生理特性的影响[J]. 作物学报, 2009, 35(6): 1059-1067.
[13] 陈军营,马平安,赵一丹,朱雪萍,崔琰,张艳敏,陈新建*. 小麦成熟胚脱分化过程中生长素相关基因的表达分析[J]. 作物学报, 2009, 35(10): 1798-1805.
[14] 许东林;周国辉;沈万宽;邓海华. 侵染甘蔗的高粱花叶病毒遗传多样性分析[J]. 作物学报, 2008, 34(11): 1916-1920.
[15] 马庆;齐璐璐;李晓玉;项艳;朱苏文;程备久. 外源细胞分裂素对玉米叶原基分化类型的调控[J]. 作物学报, 2008, 34(11): 2053-2058.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!