欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (05): 912-918.doi: 10.3724/SP.J.1006.2013.00912

• 耕作栽培·生理生化 • 上一篇    下一篇

玉米雌穗分化与籽粒发育及败育的关系

孟佳佳,董树亭*,石德杨,张海燕   

  1. 作物生物学国家重点实验室 / 山东农业大学农学院,山东泰安271018
  • 收稿日期:2012-09-03 修回日期:2012-12-10 出版日期:2013-05-12 网络出版日期:2013-01-28
  • 通讯作者: 董树亭, E-mail: stdong@sdau.edu.cn, Tel: 0538-8245838
  • 基金资助:

    本研究由国家自然科学基金项目(31171497),玉米现代产业技术体系项目(nyhyzx07-003),国家重点基础研究发展计划(973计划)项目(2011CB100105),农业部玉米产业技术体系项目(CARS-02),山东省玉米良种产业化项目(鲁科农字[2011]186号)和农业部公益性行业科技项目(20120306)资助。

Relationship of Ear Differentiation with Kernel Development and Barrenness in Maize (Zea mays L.)

MENG Jia-Jia,DONG Shu-Ting*,SHI De-Yang,ZHANG Hai-Yan   

  1. Key Laboratory of Crop Biology of China / Agronomy College of Shandong Agricultural University, Tai’an 271018, China
  • Received:2012-09-03 Revised:2012-12-10 Published:2013-05-12 Published online:2013-01-28
  • Contact: 董树亭, E-mail: stdong@sdau.edu.cn, Tel: 0538-8245838

摘要:

以郑单958 (ZD958)和登海661 (DH661)为试材,比较研究了4.57.510.5万株hm-2三个种植密度下,雌穗分化与籽粒发育及败育的关系。结果表明,密度对玉米雌穗原基开始分化的时间无影响(不同密度下,穗原基均在播后28~29 d左右开始分化),对吐丝期分化的小花总数影响很小。但是高密度推迟了雌穗的分化进程,增加了败育花和未受精花的数目,导致正常成熟小花数目的降低。与低密度相比,高密度下DH661正常小花数减少了100.0个,ZD958减少了76.4个。高密度加大了雌雄穗吐丝开花间隔,降低了吐丝植株的比例(DH661吐丝植株占93.64%ZD958的占81.80%),推迟了吐丝时间,使单株吐丝量减少,散粉持续时间缩短,导致败育增加。正常受精的小花在灌浆期也会发生籽粒败育,尤其是在花后10 d左右败育严重。相关分析表明,玉米最终的穗粒数与开花期以及花后10 d20 d的冠层底部透光率相关性显著,花败育率与开花前冠层底部透光率显著负相关。

关键词: 雌穗分化, 籽粒, 败育, 密度, 玉米

Abstract:

Two cultivars ZD958 and DH661 were used to analyze the effect of different planting densities (45 000 plant ha-1, 75 000 plant ha-1, 10 5000 plant ha-1) on kernel development and barrenness in maize (Zea mays L.). The results showed that increasing plant density had little effects on the time of ear primordia differentiation (the ear primordia presented at 28–29 days after sowing under different densities) and the total number of floret primordia during silking. However, the differentiation of ear was postponed under high density, the number of abortive florets and unfertilized florets increased with the increase of plant density. Compared with low-density, the high density reduced number of normal florets per ear by 100.0 for DH661 and by 76.4 for ZD958. Additionally, the anthesis-silking interval (ASI) was elongated, the ratio of the silked-plants was decreased (ratio of DH661 was 93.64% and that of ZD958 was 81.80% under high density), the time of silking was delayed, the number of silked florets per ear was reduced and the pollen shedding duration was shortened with increasing plant density, which results in the increment of abortion after fertilization. Interestingly, kernel abortion would also occur during grain-filling, especially in 10 days after anthesis. The kernel number per ear had a positive correlation with the bottom transmittance at silking, 10 d after silking and 20 d after silking, while the ratio of abortive floret was negatively correlated with the bottom transmittance before flowering significantly.

Key words: Ear differentiation, Kernel, Abortion, Density, Maize

[1]Zhao J-H(赵建华), Qiu R-X(邱容侠). Affecting factors for maize seed and its characteristics changes in abortive procession. J Shanxi Agric Sci (山西农业科学), 2002, 30(3): 10–13 (in Chinese with English abstract)



[2]Hanft J M, Jones R J. Kernel abortion in maize I. Carbohydrate concentration patterns and acid invertase activity of maize kernels induced to abort in vitro. Plant Physiol, 1986, 81: 503–510



[3]Shen L-X(申丽霞), Wang P(王璞), Zhang R-B(张软斌). Effect of nitrogen supply on yield and grain filling in summer maize with different crop density. Plant Nutr Fert Sci (植物营养与肥料学报), 2005, 11(3): 314–319 (in Chinese with English abstract)



[4]Wang Z-X(王忠孝), Gao X-C(高学曾), Xu J-F(许金芳), Liu Y-J(刘玉敬), Luo Y-N(罗瑶年). A study on the grain abortion of maize (Zea mays L.). Sci Agric Sin (中国农业科学), 1986, (6): 36–40 (in Chinese with English abstract) 



[5]Zhang F-L(张凤路), Cui Y-H(崔彦宏), Wang Z-M(王志敏), Zhao M(赵明), Wang S-A(王树安), Zhao J-R(赵久然), Guo J-L(郭景伦). Studies on the relation between pedicel vascular development and maize kernel abortion. J Agric Univ Hebei (河北农业大学学报), 1999, 22(1): 16–19 (in Chinese with English abstract)



[6]Zhang F-L(张凤路), Wang Z-M(王志敏), Zhao M(赵明), Wang S-A(王树安), Zhao J-R(赵久然), Guo J-L(郭景伦). Changes of Phytohormones during the period of maize kernel abortion. J China Agric Univ (中国农业大学学报), 1999, 4(3): 1–4 (in Chinese with English abstract)



[7]Feng H Y, Wang Z M, Kong F N, Zhang M J, Zhou S L. Roles of carbohydrate supply and ethylene, polyamines in maize kernel set. J Integr Plant Biol, 2011, 53: 388–398



[8]Setter T L, Parra R. Relationship of carbohydrate and abscisic acid levels to kernel set in maize under postpollination water deficit. Crop Sci, 2010, 50: 980–988



[9]Tian H-Y(田海云), Yin Z-R(尹枝瑞), Li W-Y(李维岳). Studies on the development of kernel and its relationship to the cultivation conditions. Jilin Agric Sci (吉林农业科学), 1981, (3): 22–26 (in Chinese)



[10]Zhang X-M(张秀梅), Ren H-P(任和平), Yang T-Z(杨铁钊). The relationship between the time of tip kernel abortion of corn ears and sugar content in the kernels. J Henan Agric Coll (河南农学院学报), 1984, (3): 15–24 (in Chinese with English abstract)



[11]Zhao J-R(赵久然), Chen G-P(陈国平). Effect of shading treatment at different stages of plant development on grain production of corn (Zea mays L.) and observations of tip kernel abortion. Sci Agric Sin (中国农业科学), 1990, 23(4): 28–34 (in Chinese with English abstract)



[12]Zhang F-L(张凤路), Cui Y-H(崔彦宏), Wang Z-M(王志敏), Zhao M(赵明), Wang S-A(王树安), Zhao J-R(赵久然), Guo J-L(郭景伦). Studies on energy metabolism of kernels during the period of maize kernel abortion. J Agric Univ Hebei (河北农业大学学报), 2000, 23(3): 9–12 (in Chinese with English abstract)



[13]Liu L-Y(刘立岩). Influence of ethylene on maize kernel development and SAI under the condition of culture in vitro. J Maize Sci (玉米科学), 2012, 20(1): 100-103 (in Chinese with English abstract)



[14]Zhang H-Y(张海艳). Study on kernel position effects during kernel development in maize. J Maize Sci (玉米科学), 2010, 18(4): 93–95 (in Chinese with English abstract)



[15]Li F-Y(李凤云), Sun B-P(孙本普), Li X-Y(李秀云). A study on the ear differentiation of the early maturing corn. J Anhui Agric Sci (安徽农业科学), 2006, 34(18): 4549–4553 (in Chinese)



[16]Tang Q-L(唐祈林), Rong T-Z(荣廷昭), Hang Y-B(黄玉碧). The study of barren ear tip in maize: II. The growth rhythm of flower and kernel in different region of maize ear. J Sichuan Agric Univ (四川农业大学学报), 1999, 17(2): 162–166 (in Chinese with English abstract)



[17]Zhang S(张胜), Zhang R-S(张润生), Ren Y-Z(任有志), Gao X(高翔), Wang X(王鑫). The influence of sowing time on developing process and spike differentiation of sweet corn. J Inner Mongolia Instit Agric & Anim Husb (内蒙古农牧学院学报), 1997, 18(2): 21–25 (in Chinese with English abstract)



[18]Song B(宋碧), An W(安伟), Yuan C-L(袁朝兰), Meng J-P(孟加品). Study on relationship between the leaf born and spike differentiation for both spring and summer sowed maize varieties. Hubei Agric Sci (湖北农业科学), 2011, 50(21): 4343–4347 (in Chinese with English abstract)



[19]Dong H-F(董红芬), Li H(李洪), Li A-J(李爱军), Yan X-G(阎晓光). Relationship between spike and stem growth and female spike differentiation under different densities. J Maize Sci (玉米科学), 2010, 18(5): 65–71 (in Chinese with English abstract)



[20]Sass J E, Loeffel F A. Development of axillary buds in maize in relation to barrenness. Agron J, 1959, 51: 484–486



[21]Guo X-H(郭晓华). The general reasons for floret and seed abortion and their relationship with yield in corn. J Liaoning Agric Sci (辽宁农业科学), 1988, (3): 12–17 (in Chinese with English abstract)



[22]Lemcoff J H, Loomis R S. Nitrogen and density influences on silk emergence, endosperm development, and grain yield in maize (Zea mays L.). Field Crops Res, 1994, 38: 63–72



[23]Guo X-H(郭晓华). Studies on regulating effects of ecological factors of the yield-related traits in maize. Chin J Ecol (生态学杂志), 2000, 19(1): 6–11 (in Chinese with English abstract)



[24]Fan Y-J(范杰英), Wang Y(王昱), Jiang X-L(姜晓莉), Zhang S-Z(张世忠). The mechanism and effect of the early ageing and kernel abortion of corn leaves. J Anhui Agric Sci (安徽农业科学), 2011, 39(3): 1330–1332 (in Chinese with English abstract)



[25]Iremiren G O, Milbourn G M. Effect of plant density on ear barrenness in maize. Exp Agric, 1980, 16: 321–326



[26]Wilson J H. Effect of plant population on ear differentiation and growth in maize. Ann Appl Biol, 1978, 90: 127–132



[27]Li C-Q(李春奇), Zheng H-M(郑慧敏), Li Y(李芸), Li C-H(李潮海). Effect of planting density on the yield and development of maize ear. Sci Agric Sin (中国农业科学), 2010, 43(12): 2435–2442 (in Chinese with English abstract)



[28]Bolaños J, Edmeade G O. Eight cycled selection for drought tolerance in lowland tropical maize: I. Responses in grain yield, biomass, and radiation utilization. Field Crops Res, 1993, 31: 233–252



[29]Earley E B, Seif R D, Hageman R H, Miller R J. Effect of shade on maize production under field conditions. Crop Sci, 1966, 6: 1–6



[30]Stringfield G H, Thatcher L E. Stands and methods of planting for corn hybrids. Agron J, 1947, 39: 995–1010



[31]Edmeades G O, Danynard T B. The relationship between final yield and photosynthesis at flowering in individual maize plants. Can J Plant Sci, 1979, 59: 585–601



[32]Tollenaar M, Dwyer L M, Stewart D W. Ear and kernel formation in maize hybrids representing three decades of grain yield improvement in Ontario. Crop Sci, 1992, 32: 432–438



[33]Otegui M E. Kernel set and flower synchrony within the ear of maize: II. Plant population effects. Crop Sci, 1997, 37: 448–455



[34]Ottman M J, Welch L F. Supplemental radiation effects on senescence, plant nutrients, and yield of field-growth corn. Agron J, 1988, 80: 619–626



[35]Jones R J, Simmons S R. Effect of altered source-sink ratio on growth of maize kernels. Crop Sci, 1983, 23: 129–134



[36]Otegui M E, Nicolini M G, Ruiz R A, Dodds P A. Sowing date effects on grain yield components for different maize genotypes. Agron J, 1995, 87: 29–33



[37]Camberato J J, Kamprath E J, Moll R H, Jackson W A. Apical and subapical earshoot development of prolific maize hybrids (Zea mays L.): The role of nitrogen. Maydica, 1989, 34: 309–317



[38]Edmeades G O, Bolaños J, Hernandez M, Bello S. Causes for silk delay in a lowland tropical maize population. Crop Sci, 1993, 33: 1029–1035
[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[4] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[5] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[6] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[7] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[8] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[9] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[10] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[11] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[12] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[13] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
[14] 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738.
[15] 杨谨, 白爱宁, 白雪, 陈娟, 郭林, 刘春明. 水稻胚胎和胚乳双缺陷突变体eed1的表型与遗传分析[J]. 作物学报, 2022, 48(2): 292-303.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!