欢迎访问作物学报,今天是

作物学报 ›› 2007, Vol. 33 ›› Issue (09): 1495-1501.

• 研究论文 • 上一篇    下一篇

甘蓝型油菜含油量的遗传与QTL定位

张洁夫1,2;戚存扣2;浦惠明2;陈松2;陈锋2;高建芹2;陈新军2;顾慧2;傅寿仲2,*   

  1. 1 南京农业大学作物遗传与种质创新国家重点实验室,江苏南京 210095;2 江苏省农业科学院经济作物研究所,江苏南京 210014
  • 收稿日期:2007-01-29 修回日期:1900-01-01 出版日期:2007-09-12 网络出版日期:2007-09-12
  • 通讯作者: 傅寿仲

Inheritance and QTL Identification of Oil Content in Rapeseed (Brassica napus L.)

ZHANG Jie-Fu12,QI Cun-Kou2,PU Hui-Ming2,CHEN Song2,CHEN Xin-Jun2,GAO Jian-Qin2,CHEN Feng2,GU Hui2,FU Shou-Zhong2*   

  1. 1 National Key Laboratory of Crop Genetics and Germplasm Innovation, Nanjing Agricultural University, Nanjing 210095, Jiangsu; 2 Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
  • Received:2007-01-29 Revised:1900-01-01 Published:2007-09-12 Published online:2007-09-12
  • Contact: FU Shou-Zhong

摘要:

利用主基因+多基因遗传模型对甘蓝型油菜品系APL01(低含油量亲本)与M083(高含油量亲本)杂交所获得的6个基本世代(P1, P2, F1, B1, B2, F2)的含油量进行遗传分析,并以(APL01/M083)BC1F1为作图群体,利用251个分子标记,构建了由19个连锁群组成的分子标记遗传图谱,经WinQTLCart 2.0对种子含油量进行QTL扫描。结果表明,该杂交组合种子含油量由1对加性-显性主基因+加性-显性-上位性多基因控制,主基因遗传率为38.37%~47.16%,多基因遗传率为24.29%~38.28%。共获得qOC1qOC8qOC10qOC13-1qOC13-2等5个与含油量相关的QTL,其中qOC1位于N1连锁群的m19e21c~A0214Ra142区间,可解释含油量表型变异的5.21%;qOC8位于N8连锁群的A0216Gb206~m5e42区间,可解释含油量表型变异的6.34%;qOC10位于N10连锁群的m15e48~A0228Bb437区间,可解释含油量表型变异的9.45%;qOC13-1位于N13连锁群的A0224Rb157~A0301Gb399区间,可解释含油量表型变异的18.12%;qOC13-2位于N13连锁群的A0226Ba377~A0226Ba367区间,可解释含油量表型变异的10.17%。5个QTL中qOC10qOC13-2位点APL01对含油量的贡献为正值,qOC1qOC8qOC13-1位点M083的贡献为正值。qOC13-1效应值较大,属主效基因位点,其余4个QTL效应相对较小,可作为多基因位点。

关键词: 油菜, 含油量, 遗传, QTLs

Abstract:

Oilseed rape is one of the most important oil crops in China, and its oil content is a very important quantitative trait, which is easily affected by environment. Oil content in seeds of oilseed rape is mainly controlled by genes and affected by the interaction of genotype and environment. In the present research, a low oil content line APL01 (Brassica napus L.) was crossed with a high oil content line M083 (B. napus L.) to develop six basic populations (P1, P2, F1, B1, B2 and F2) for analysis of the genetic model. Results showed that seed oil content in this cross was controlled by an additive-dominance major gene plus additive-dominance-epistasis polygene. The heritabilities of major gene were 38.37%–47.16%, while those of the polygene were 24.29%-38.28%. A genetic linkage map of Brassica napus L. was constructed by BC1F1 and 251 molecular markers, which contained 19 linkage groups. Five QTLs, qOC1, qOC8, qOC10, qOC13-1 and qOC13-2, related to seed oil content were identified from this cross by WinQtlCart 2.0. qOC1 was located in the region of m19e21c–A0214Ra142 on linkage group N1, which could explain 5.21% of the oil content variation in the population. qOC8 was located in the region of A0216Gb206-m5e42 on N8, and accounted for 6.34% of phenotypic variation. qOC10 was located between m15e48 and A0228Bb437 on linkage group N10 and explained 9.45% of phenotypic variation. qOC13-1 was located in the region of A0224Rb157–A0301Gb399 on linkage group N13, and accounted for 18.12% of phenotypic variation. qOC13-2 was located in the region of A0226Ba377–A0226Ba367 on linkage group N13, and accounted for 10.17% of phenotypic variation. Among these five QTLs, the positive effects of qOC10 and qOC13-2 loci for oil content were from APL01, while those of qOC1, qOC8 and qOC13-1 loci from M083. The qOC13-1 with larger phenotypic effect could be regarded as major gene locus, and other four QTLs with relative smaller effects could be regarded as polygene loci.

Key words: Oilseed rape, Oil content, Inheritance, QTLs

[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[3] 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501.
[4] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[5] 黄伟, 高国应, 吴金锋, 刘丽莉, 张大为, 周定港, 成洪涛, 张凯旋, 周美亮, 李莓, 严明理. 芥菜型油菜BjA09.TT8BjB08.TT8基因调节类黄酮的合成[J]. 作物学报, 2022, 48(5): 1169-1180.
[6] 雷新慧, 万晨茜, 陶金才, 冷佳俊, 吴怡欣, 王家乐, 王鹏科, 杨清华, 冯佰利, 高金锋. 褪黑素与2,4-表油菜素内酯浸种对盐胁迫下荞麦发芽与幼苗生长的促进效应[J]. 作物学报, 2022, 48(5): 1210-1221.
[7] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[8] 石育钦, 孙梦丹, 陈帆, 成洪涛, 胡学志, 付丽, 胡琼, 梅德圣, 李超. 通过CRISPR/Cas9技术突变BnMLO6基因提高甘蓝型油菜的抗病性[J]. 作物学报, 2022, 48(4): 801-811.
[9] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[10] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[11] 冯亚, 朱熙, 罗红玉, 李世贵, 张宁, 司怀军. 马铃薯StMAPK4响应低温胁迫的功能解析[J]. 作物学报, 2022, 48(4): 896-907.
[12] 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607.
[13] 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769.
[14] 赵美丞, 刁现民. 谷子近缘野生种的亲缘关系及其利用研究[J]. 作物学报, 2022, 48(2): 267-279.
[15] 黄莉, 陈玉宁, 罗怀勇, 周小静, 刘念, 陈伟刚, 雷永, 廖伯寿, 姜慧芳. 花生种子大小相关性状QTL定位研究进展[J]. 作物学报, 2022, 48(2): 280-291.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!