欢迎访问作物学报,今天是

作物学报 ›› 2006, Vol. 32 ›› Issue (08): 1135-1142.

• 研究论文 • 上一篇    下一篇

甘蓝型油菜产量及其构成因素的QTL定位与分析

张书芬1,2;傅廷栋1;朱家成2;王建平2;文雁成2;马朝芝1   

  1. 1 华中农业大学作物遗传改良国家重点实验室,湖北武汉 430070;2 河南省农业科学院棉花油料作物研究所,河南郑州 450002
  • 收稿日期:2005-08-25 修回日期:1900-01-01 出版日期:2006-08-12 网络出版日期:2006-08-12
  • 通讯作者: 马朝芝

QTL Mapping and Epistasis Analysis for Yield and Its Components in Brassica napus L.

ZHANG Shu-Fen1 2,FU Ting-Dong1,ZHU Jia-Cheng2,WANG Jian-Ping2,WEN Yan-Cheng2,MA Chao-Zhi1   

  1. 1National Key Laboratory of Crop Genetic Improvement,Huazhong Agricultural University,Wuhan 430070, Hubei; 2Cotton and Oil Crops Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, Henan, China
  • Received:2005-08-25 Revised:1900-01-01 Published:2006-08-12 Published online:2006-08-12
  • Contact: MA Chao-Zhi

摘要:

产量性状是复杂的数量性状, 对种子的单株产量及其构成因素(全株总有效角果数、每角粒数、千粒重)进行QTL定位和上位性分析,确定其在染色体上的位置及其遗传效应,可以探讨油菜杂种优势产生原因,提高育种中对产量性状优良基因型选择的效率,达到提高油菜产量的目的。在双低油菜细胞质雄性不育保持系1141B和双高恢复系垦C1构建的F2作图群体中,运用SRAP、AFLP和SSR三种标记技术构建了一个甘蓝型油菜(Brassica napus L.)的分子标记遗传连锁图谱。共包含244个标记,分布于20个主要连锁群、1个三联体上,图谱总长度为2 769.5 cM。采用Windows QTL Cartographer Version 2.0统计软件及复合区间作图法,对油菜单株产量及其3大构成因素进行QTL定位,共检测到QTLs 16个分布在9个连锁群上,其中第6和13连锁群最多,均有3个。单个QTL解释性状表型变异的0.38%~73.34%。对于同一性状,等位基因的增效作用既来自母本,亦源自父本;采用双向方差分析法对位点间互作及其上位性进行分析,检测到26对影响产量构成性状的上位性互作效应QTL,说明油菜基因组中存在大量控制产量的互作位点,油菜产量性状的上位性存在着多效性,上位性互作包括QTL与非QTL位点,其中以非QTL位点较多。一般互作位点的独立效应值较小,而互作的效应值显著增大,且一般超过两位点独立效应值之和。反映了控制产量性状基因的复杂性。上位性是甘蓝型油菜产量性状杂种优势的重要遗传基础。

关键词: 甘蓝型油菜, 产量构成因素, 遗传图谱, 分子标记, QTLs定位, 上位性

Abstract:

Since yield traits are complicated quantitative traits, QTLs mapping and genetic effects analyzed for seed yield and its components can help us to understand the source for heterosis and improve the selecting efficiency for good genotype of seed yield. A genetic linkage map consisting of 244 DNA markers was constructed based on F2 population derived from a cross between double low parent CMS maintainer 1141B and double high CMS restorer KenC1. The markers in the linkage map distributed on all the 20 main linkage groups and 1 triplet and covered 2 769.5 cM of the rapeseed genome. The statistic software of Windows QTL Cartographer Version2.0 and Composite Internal Mapping (CIM) were applied to detect QTLs for seed yield and its components, including seed yield per plant, number of silique per plant, number of seed per silique and 1000-seed weight. A total of 16 QTLs located in nine different linkage groups were identified for seed yield and the three component traits. There were three QTLs (the most QTLs) in LG6 and LG13, respectively. Each of these QTLs explained 0.38%–73.34% of the phenotypic variance. They had additional effect of alleles that came from maternal parent, the others from paternal parent for the same trait. Epistatic effect was screened in all 20 linkage groups using all possible loci pairs by two-way ANOVAs between co-dominant markers. Twenty-six two-locus combinations had significant epistatic effects. The results showed that there were many interaction loci involving the entire genome detected in yield traits. The epistatic interactions had pleiotropic effects, interactions were contained epistasis between QTL and non-QTL (non-significant effect loci) and between non-QTL. The later was the majority. In general, the independent effect of interaction loci was lower, on the opposite, the value of interaction effect was higher, and much higher than the total of independent effects.This indicated that the genes controlling seed yield was complicated. Epistasis interactions might play an important role as the basis of heterosis in Brassica napus L. Some questions about QTLs mapping were also discussed.

Key words: Brassica napus L., Yield components, Genetic linkage map, Molecular marker, QTL mapping, Epistatic effect

中图分类号: 

  • Q943
[1] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[2] 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501.
[3] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[4] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[5] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[6] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[7] 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607.
[8] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[9] 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769.
[10] 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510.
[11] 王音, 冯志威, 葛川, 赵佳佳, 乔玲, 武棒棒, 闫素仙, 郑军, 郑兴卫. 普通小麦-六倍体中间偃麦草易位系的抗条锈鉴定及应用评估[J]. 作物学报, 2021, 47(8): 1511-1521.
[12] 韩玉洲, 张勇, 杨阳, 顾正中, 吴科, 谢全, 孔忠新, 贾海燕, 马正强. 小麦株高QTL Qph.nau-5B的效应评价[J]. 作物学报, 2021, 47(6): 1188-1196.
[13] 李杰华, 端群, 史明涛, 吴潞梅, 柳寒, 林拥军, 吴高兵, 范楚川, 周永明. 新型抗广谱性除草剂草甘膦转基因油菜的创制及其鉴定[J]. 作物学报, 2021, 47(5): 789-798.
[14] 贺军与, 尹顺琼, 陈云琼, 熊静蕾, 王卫斌, 周鸿斌, 陈梅, 王梦玥, 陈升位. 小麦矮秆突变体的鉴定及其突变性状的关联分析[J]. 作物学报, 2021, 47(5): 974-982.
[15] 唐鑫, 李圆圆, 陆俊杏, 张涛. 甘蓝型油菜温敏细胞核雄性不育系160S花药败育的形态学特征和细胞学研究[J]. 作物学报, 2021, 47(5): 983-990.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!