欢迎访问作物学报,今天是

作物学报 ›› 2006, Vol. 32 ›› Issue (03): 442-448.

• 研究论文 • 上一篇    下一篇

棉纤维品质指标形成的动态模拟

马富裕;朱艳;曹卫星;杨建荣;郑重;程海涛;慕彩芸   

  1. 南京农业大学/江苏省信息农业高技术研究重点实验室,江苏南京210095
  • 收稿日期:2004-09-13 修回日期:1900-01-01 出版日期:2006-03-12 网络出版日期:2006-03-12
  • 通讯作者: 曹卫星

Modeling Fiber Quality Formation in Cotton

MA Fu-Yu; ZHU Yan; CAO Wei-Xing; YANG Jian-Rong; ZHENG Zhong; CHEN Hai-Tong and MU Cai-Yun   

  1. High-Tech Key Laboratory of Information Agriculture,Jiangsu Province/ Nanjing Agricultural University, Nanjing 210095, Jiangxu
  • Received:2004-09-13 Revised:1900-01-01 Published:2006-03-12 Published online:2006-03-12
  • Contact: CAO Wei-Xing

摘要:

棉纤维品质形成的准确模拟对构建棉花生长模拟系统及优质高产管理决策具有重要意义。本文以棉铃发育的生理生态过程为基础,采用生理发育时间作为定量发育进程的尺度,通过量化品种效应及水分、日均温和日温差等生态因子对棉纤维品质指标形成的影响,构建了预测棉纤维伸长、比强度增加和纤维素积累的模拟模型。利用不同生态点不同日均温和日温差条件以及不同水分处理的试验资料对模型进行了检验。结果显示,纤维长度、纤维比强度、纤维素含量模拟值与观测值之间的根均方差(RMSE)分别为1.15 mm,1.03 cN·tex-1和4.37%,表明模型具有较好的预测性和适用性。

关键词: 棉花, 纤维品质, 模拟模型

Abstract:

Accurate prediction of fiber quality formation is highly important for successful cotton growth simulation and management decision. Experiments were conducted in natural environment to quantitatively describe the relation between the dynamic process of fiber quality formation and conditions of water supply and growth temperature in Nanjing (32°03′N,118°47′E), Anyang(36°7′N, 116°22′E), Baoding (39°05′N, 115°47′E) and Shihezi (44°26′N,86°01′E) in 2002 and in Shihezi only in 1997,2003. A simulation model for predicting fiber elongation, strength and cellulose content accumulation was developed based on days after anthesis (DAA) and boll physiological development time (BPDT). The effects of soil water content, daily mean temperature (DMT) and daily temperature difference (DTD) were taken into account, along with genetic parameters for different cultivars in the model. The model was validated using the experiment data sets under different conditions of DTD, DMT, and soil water status at different eco-sites. The root mean square errors (RMSEs) between the simulated and observed values of fiber length, fiber strength and cellulose content are 1.15 mm, 1.03 cN·tex-1 and 4.37%, respectively, indicating that the model is accurate and applicable under different conditions.

Key words: Cotton, Fiber quality, Simulation model

中图分类号: 

  • S562
[1] 周静远, 孔祥强, 张艳军, 李雪源, 张冬梅, 董合忠. 基于种子萌发出苗过程中弯钩建成和下胚轴生长的棉花出苗壮苗机制与技术[J]. 作物学报, 2022, 48(5): 1051-1058.
[2] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[3] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[4] 郑曙峰, 刘小玲, 王维, 徐道青, 阚画春, 陈敏, 李淑英. 论两熟制棉花绿色化轻简化机械化栽培[J]. 作物学报, 2022, 48(3): 541-552.
[5] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[6] 张特, 王蜜蜂, 赵强. 滴施缩节胺与氮肥对棉花生长发育及产量的影响[J]. 作物学报, 2022, 48(2): 396-409.
[7] 赵文青, 徐文正, 杨锍琰, 刘玉, 周治国, 王友华. 棉花叶片响应高温的差异与夜间淀粉降解密切相关[J]. 作物学报, 2021, 47(9): 1680-1689.
[8] 岳丹丹, 韩贝, Abid Ullah, 张献龙, 杨细燕. 干旱条件下棉花根际真菌多样性分析[J]. 作物学报, 2021, 47(9): 1806-1815.
[9] 曾紫君, 曾钰, 闫磊, 程锦, 姜存仓. 低硼及高硼胁迫对棉花幼苗生长与脯氨酸代谢的影响[J]. 作物学报, 2021, 47(8): 1616-1623.
[10] 马欢欢, 方启迪, 丁元昊, 池华斌, 张献龙, 闵玲. 棉花GhMADS7基因正调控棉花花瓣发育[J]. 作物学报, 2021, 47(5): 814-826.
[11] 许乃银, 赵素琴, 张芳, 付小琼, 杨晓妮, 乔银桃, 孙世贤. 基于GYT双标图对西北内陆棉区国审棉花品种的分类评价[J]. 作物学报, 2021, 47(4): 660-671.
[12] 周冠彤, 雷建峰, 代培红, 刘超, 李月, 刘晓东. 棉花CRISPR/Cas9基因编辑有效sgRNA高效筛选体系的研究[J]. 作物学报, 2021, 47(3): 427-437.
[13] 卢合全, 唐薇, 罗振, 孔祥强, 李振怀, 徐士振, 辛承松. 商品有机肥替代部分化肥对连作棉田土壤养分、棉花生长发育及产量的影响[J]. 作物学报, 2021, 47(12): 2511-2521.
[14] 王晔, 刘钊, 肖爽, 李芳军, 吴霞, 王保民, 田晓莉. 转PSAG12-IPT基因对棉花叶片衰老及产量和纤维品质的影响[J]. 作物学报, 2021, 47(11): 2111-2120.
[15] 杨琴莉, 杨多凤, 丁林云, 赵汀, 张军, 梅欢, 黄楚珺, 高阳, 叶莉, 高梦涛, 严孙艺, 张天真, 胡艳. 棉花花器官突变体的鉴定及候选基因的克隆[J]. 作物学报, 2021, 47(10): 1854-1862.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!