欢迎访问作物学报,今天是

作物学报 ›› 2008, Vol. 34 ›› Issue (01): 54-60.doi: 10.3724/SP.J.1006.2008.00054

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

甘蓝型油菜主要脂肪酸组成的QTL定位

张洁夫;戚存扣;浦惠明;陈松;陈锋;高建芹;陈新军;顾慧;傅寿仲   

  1. 江苏省农业科学院经济作物研究所
  • 收稿日期:2007-03-05 修回日期:1900-01-01 出版日期:2008-01-12 网络出版日期:2008-01-12
  • 通讯作者: 张洁夫

QTL Identification for Fatty Acid Content in Rapeseed (Brassica napus L.)

ZHANG Jie-Fu,QI Cun-Kou,PU Hui-Ming,CHEN Song,CHEN Feng,GAO Jian-Qin,CHEN Xin-Jun,GU Hui,FU Shou-Zhong
  

  1. Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China

  • Received:2007-03-05 Revised:1900-01-01 Published:2008-01-12 Published online:2008-01-12
  • Contact: ZHANG Jie-Fu

摘要:

应用RAPD、SSR和SRAP技术, 对甘蓝型油菜低芥酸品系APL01与高芥酸品系M083杂交组合的BC1F1群体进行检测, 获得251个分子标记, 构建了19个连锁群组成的分子标记遗传图谱; 应用WinQTLCart 2.0对油菜主要脂肪酸组成进行QTL扫描, 获得与棕榈酸含量相关的QTL 5个, 分别位于N3、N8、N10和N13连锁群, 其中效应值较大的主效QTL qPA8-1qPA13分别可解释棕榈酸含量表型变异的11.31%和14.47%。获得与硬脂酸含量相关的QTL 3个, 分别位于N1、N8和N16连锁群, 其中效应值较大的主效QTL qST16可解释硬脂酸含量表型变异的12.22%。获得与油酸含量相关的QTL 2个, 位于N8和N13连锁群, 均为主效QTL, 其中qOL8位于N8连锁群的m11e37b~A0226Ba267区间, 可解释油酸含量表型变异的11.73%, qOL13位于N13连锁群的m18e46~m20e25a区间, 可解释表型变异的27.14%。获得与亚油酸含量相关的QTL 3个, 其中主效QTL qLI8-1位于N8连锁群, 可解释亚油酸含量表型变异的13.25%。获得与亚麻酸含量相关的QTL 3个, 效应值均较小, 属微效QTL。获得与廿碳烯酸含量相关的QTL 4个, 分别位于N8、N13和N15连锁群, 其中主效QTL qEI8-1qEI8-2qEI13分别可解释廿碳烯酸含量表型变异的12.20%、10.22%和11.14%。获得与芥酸含量相关的QTL 2个, 位于N8和N13连锁群, 均为主效QTL, 其中qER8位于N8连锁群的m11e37b~A0226Ba267区间, 可解释芥酸含量表型变异的16.74%; qER13位于N13连锁群的A0301Bb398~m18e46区间, 可解释芥酸含量表型变异的31.32%。在N8连锁群的分子标记m11e27b附近及N13连锁群的分子标记m18e46附近存在多个主要脂肪酸的主效QTL, 这些标记可用于油菜脂肪酸改良的分子标记辅助选择。

关键词: 油菜, 脂肪酸组成, QTL

Abstract:

Rapeseed is one of the important oil crops in China, and the change of the composition in fatty acid content can affect the value of oil for edible and industrial use. QTLs linked to main fatty acid composition can be used for marker-assisted selection in fatty acid composition improvement in rapeseed. A segregation population BC1F1, derivered from a cross between a low erucic acid content line APL01 and a high erucic acid content variety M083 in Brassica napus L., was used to construct a genetic map and identify QTLs linked to main fatty acid composition in rapeseed. The genetic map containing 19 linkage groups was constructed with 251 markers of RAPD, SSR, and SRAP in rapeseed. Via WinQTLCart scanning, five QTLs linked to palmitic acid (C16:0) content were identified, which were located on linkage groups N3, N8, N10, and N13.The main-effect QTLs qPA8-1 and qPA13 linked to palmatic acid content in rapeseed explained 11.31% and 14.47% of the palmitic acid content variation in segregation population BC1F1, respectively. Three QTLs linked to stearic acid (C18:0) content were identified, which were located on the linkage groups N1, N8, and N16. The main-effect QTL qST16 accounted for 12.22% of phenotypic variation. Two QTLs, qOL8 and qOL13, both the main-effect QTLs linked to oleic acid (C18:1) content, were located in the region of m11e37b–A0226Ba267 on linkage group N8 and m18e46–m20e25a on N13, and accounted for 11.73% and 27.14% of phenotypic variation, respectively. Three QTLs linked to linoleic acid (C18:2) content were identified, and the main-effect QTL qLI8-1 accounted for 13.25% of phenotypic variation. Three QTLs, qLN1, qLN8, and qLN11, linked to linolenic acid (C18:3) content were identified, but they had a rather small effects on C18:3, and could be regarded as minor-QTLs. Four QTLs linked to eicosenoic acid (C20:1) content, and three of them, qEI8-1, qEI8-2, and qEI13, were main-effect QTLs, accounting for 12.20%, 10.22%, and 11.14% of phenotypic variation, respectively. Two QTLs qER8 and qER13, both the main-effect QTLs linked to erucic acid (C22:1) content, were located in the region of m11e37b–A0226Ba267 on linkage group N8 and A0301Bb398–m18e46 on N13, accounting for 16.74% and 31.32% of phenotypic variation, respectively. The main-effect QTLs linked to fatty acid content, which were located in the region near marker m11e27b on linkage group N8 and m18e46 on linkage group N13, could be used in marker-assisted selection in fatty acid improvement in rapeseed.

Key words:

Rapeseed, Fatty acid composition, QTL

[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[3] 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501.
[4] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[5] 黄伟, 高国应, 吴金锋, 刘丽莉, 张大为, 周定港, 成洪涛, 张凯旋, 周美亮, 李莓, 严明理. 芥菜型油菜BjA09.TT8BjB08.TT8基因调节类黄酮的合成[J]. 作物学报, 2022, 48(5): 1169-1180.
[6] 雷新慧, 万晨茜, 陶金才, 冷佳俊, 吴怡欣, 王家乐, 王鹏科, 杨清华, 冯佰利, 高金锋. 褪黑素与2,4-表油菜素内酯浸种对盐胁迫下荞麦发芽与幼苗生长的促进效应[J]. 作物学报, 2022, 48(5): 1210-1221.
[7] 石育钦, 孙梦丹, 陈帆, 成洪涛, 胡学志, 付丽, 胡琼, 梅德圣, 李超. 通过CRISPR/Cas9技术突变BnMLO6基因提高甘蓝型油菜的抗病性[J]. 作物学报, 2022, 48(4): 801-811.
[8] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[9] 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607.
[10] 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769.
[11] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[12] 赵改会, 李书宇, 詹杰鹏, 李晏斌, 师家勤, 王新发, 王汉中. 甘蓝型油菜角果数突变体基因的定位及候选基因分析[J]. 作物学报, 2022, 48(1): 27-39.
[13] 娄洪祥, 姬建利, 蒯婕, 汪波, 徐亮, 李真, 刘芳, 黄威, 刘暑艳, 尹羽丰, 王晶, 周广生. 种植密度对油菜正反交组合产量与倒伏相关性状的影响[J]. 作物学报, 2021, 47(9): 1724-1740.
[14] 张建, 谢田晋, 尉晓楠, 王宗铠, 刘崇涛, 周广生, 汪波. 无人机多角度成像方式的饲料油菜生物量估算研究[J]. 作物学报, 2021, 47(9): 1816-1823.
[15] 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!