欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (1): 66-70.doi: 10.3724/SP.J.1006.2009.00066

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

蓝细菌血畿飞逝基因的克隆及其向甘蓝型油菜中的转化

谭小力1,2,孔凡明1**,张丽丽1,李娟1,陈松2,戚存扣2*   

  1. 1江苏大学生命科学研究院,江苏镇江212013;2江苏省农业科学院经济作物研究所,江苏南京210014
  • 收稿日期:2008-03-24 修回日期:2008-07-16 出版日期:2009-01-12 网络出版日期:2008-11-17
  • 通讯作者: 戚存扣
  • 基金资助:

    本研究由江苏大学高级人才基金(05JDG003),江苏省农科院博士后基金,江苏省博士后基金(0601015B)资助

Cloning and Analysis of Hemoglobin Gene in Cyanobacterium and Transformation into Brassica napus L.

TAN Xiao-Li1,2,KONG Fan-Ming1,*,ZHANG Li-Li1,CHEN Song2,QI Chui-Kou2*   

  1. 1Institute of Life Sciences,Jiangsu University,Zhenjiang 212013,China;2 Institute of Imdustrial Crop,Jiangsu Academy of Agricultural Sciences,Nanjiang 200014,China
  • Received:2008-03-24 Revised:2008-07-16 Published:2009-01-12 Published online:2008-11-17
  • Contact: QI Chui-Kou

摘要:

血红蛋白存在于动物、植物、细菌、真菌、酵母、藻类、原生动物等生物体中。利用PCR方法克隆了蓝细菌Synechocystis sp. PCC 680的血红蛋白基因SLR2097,该基因属于“truncated”血红蛋白家族,大小为375 bp,编码123个氨基酸残基。数据库搜索的结果显示所有的血红蛋白都有一个保守基序,即‘F-[L]-x(4)-[G]-G-[T]-x(2)-[Y]-x-[G]-[R]-x-[M]-x(3)-H’, “truncated”血红蛋白家族也有该结构,表明它们的进化祖先相同。将获得的SLR2097连接到双元载体pCAMBIA1300-CaMV35S上,并转化甘蓝型油菜品种宁油12。转基因油菜表型分析表明,血红蛋白基因SLR2097在油菜中的表达促进油菜的生长并缩短发育期,引起早熟,这些表型对改良油菜的农艺性状有重要的应用价值。

关键词: 农杆菌, 甘蓝型油菜, 血红蛋白, SLR2097, 转化

Abstract:

Hemoglobin exists in most organisms including animals, plants, protozoa, algae, bacteria and fungi. In the paper, hemoglobin gene SLR2097 was cloned from Synechocystis sp. PCC 6803, which is 375 bp in size and encodes123 amino acid polypeptide chains belonging to the truncated hemoglobin family. Hemoglobin canbind oxygen and co-ordinate the heme iron with protein ligation. Database search showed that a motif ‘F-[L]-x(4)-[G]-G-[T]-x(2)-[Y]-x-[G]-[R]-x-[M]-x(3)-H’ occurred in hemoglobins. Therefore, the truncated hemoglobins might evolve from the same ancestor of hemoglobin. The hemoglobin gene SLR2097 was ligated into binary vector pCAMBIA1300-CaMV35S, and then transformed into rapeseed cultivar Ningyou 12 with Agrobacterium mediated transformation method. Phenotype analysis indicated that the expression of hemoglobin gene SLR2097 led to the earlier maturity of transgenic rapeseed. These phenotype variations have a potential application in the rapeseed production in the future.

Key words: Agrobacterium tumefaciens, Brassica napus, Hemoglobin SLR2097, Transformation

[1] Hardison R C. A brief history of hemoglobins: Plant, animal, protist, and bacteria. Proc Natl Acad Sci USA, 1996, 93: 5675–5679
[2] Perutz M F. Regulation of oxygen affinity of hemoglobin: influence of structure of the globin on the heme iron. Ann Rev Biochem, 1979, 48: 327–386
[3] Perutz M F. Structure and function of hemoglobin. Harvey Lect, 1969, 63: 213–261
[4] Scott N L, Lecomte J T. Cloning, expression, purification and preliminary characterization of a putative hemoglobin from the cyanobacterium Synechocystis sp. PCC 6803. Protein Sci, 2000, 9: 587–597
[5] Pesce A, Couture M, Dewilde S, Guertin M, Yamauchi K, Ascenzi P, Moens L, Bolognesi M. A novel two-over-two α-helical sandwich fold is characteristic of the truncated hemoglobin family. Embo J, 2000, 19: 2424–2434
[6] Moens L, Vanfleteren J, Van de Peer Y, Peeters K, Kapp O, Czeluzniak J, Goodman M, Blaxter M, Vinogradov S. Globins in non-vertebrate species: Dispersal by horizontal gene transfer and evolution of the structure-function relationships. Mol Bio Evol, 1996, 13: 324–333
[7] Holmberg N, Lilius G, Bailey J E, Bulow L. Transgenic tobacco expressing Vitreoscilla hemoglobin exhibits enhanced growth and altered metabolite production. Nat Biotechnol, 1997, 15: 244–247
[8] Cardoza V, Stewart C N. Increased Agrobacterium-mediated transformation and rooting efficiencies in canola (Brassica napus L.) from hypocotyl segment explants. Plant Cell Rep, 2003, 21: 599–604
[9] Block M, Brouwer D, Tenning P. Transformation of Brassica napus and Brassica oleracea using Agrobacterium tumefaciens and the expression of the bar and neo genes in the transgenic plants. Plant Physiol, 1989, 91: 694–701
[10] Murashige T, Skong F. A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol Plant, 1962, 15: 473–497
[11] Doyle J J. Isolation of plant DNA from fresh tissues. Focus, 1990, 12: 13–15
[12] Chomczynski P. Solubilization in formamide protects RNA from degradation, Nucl Acids Res, 1992, 20: 3791–3792
[13] Weber R E, Vinogradov S N. Nonvertebrate hemoglobins: functions and molecular adaptations. Physiol Rev, 2001, 81: 569–628
[14] Lecomte J T J, Scott N L, Vu B C, Falzone C J. Binding of ferric heme by the recombinant globin from the cyanobacterium Synechocystis sp. PCC 6803. Biochemistry, 2001, 40: 6541–6552
[15] Khosla C, Curtis J E, DeModena J, Rinas U, Bailey J E. Expression of intracellular hemoglobin improves protein synthesis in oxygen-limited Escherichia coli. Biotechnology, 1990, 8: 849–853
[1] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[2] 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501.
[3] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[4] 冯亚, 朱熙, 罗红玉, 李世贵, 张宁, 司怀军. 马铃薯StMAPK4响应低温胁迫的功能解析[J]. 作物学报, 2022, 48(4): 896-907.
[5] 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607.
[6] 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769.
[7] 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510.
[8] 宋天晓, 刘意, 饶莉萍, Soviguidi Deka Reine Judesse, 朱国鹏, 杨新笋. 甘薯细胞壁蔗糖转化酶基因IbCWIN家族成员鉴定及表达分析[J]. 作物学报, 2021, 47(7): 1297-1308.
[9] 李杰华, 端群, 史明涛, 吴潞梅, 柳寒, 林拥军, 吴高兵, 范楚川, 周永明. 新型抗广谱性除草剂草甘膦转基因油菜的创制及其鉴定[J]. 作物学报, 2021, 47(5): 789-798.
[10] 唐鑫, 李圆圆, 陆俊杏, 张涛. 甘蓝型油菜温敏细胞核雄性不育系160S花药败育的形态学特征和细胞学研究[J]. 作物学报, 2021, 47(5): 983-990.
[11] 唐锐敏, 贾小云, 朱文娇, 印敬明, 杨清. 马铃薯热激转录因子HsfA3基因的克隆及其耐热性功能分析[J]. 作物学报, 2021, 47(4): 672-683.
[12] 周新桐, 郭青青, 陈雪, 李加纳, 王瑞. GBS高密度遗传连锁图谱定位甘蓝型油菜粉色花性状[J]. 作物学报, 2021, 47(4): 587-598.
[13] 李书宇, 黄杨, 熊洁, 丁戈, 陈伦林, 宋来强. 甘蓝型油菜早熟性状QTL定位及候选基因筛选[J]. 作物学报, 2021, 47(4): 626-637.
[14] 张春, 赵小珍, 庞承珂, 彭门路, 王晓东, 陈锋, 张维, 陈松, 彭琦, 易斌, 孙程明, 张洁夫, 傅廷栋. 甘蓝型油菜千粒重全基因组关联分析[J]. 作物学报, 2021, 47(4): 650-659.
[15] 唐婧泉, 王南, 高界, 刘婷婷, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. 甘蓝型油菜SnRK基因家族生物信息学分析及其与种子含油量的关系[J]. 作物学报, 2021, 47(3): 416-426.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!