作物学报 ›› 2009, Vol. 35 ›› Issue (2): 270-278.doi: 10.3724/SP.J.1006.2009.00270
张坤普1,2;徐宪斌3;田纪春1,*
ZHANG Kun-Pu1,2, XU Xian-Bin3,TIAN Ji-Chun1,*
摘要:
[1]Kearsey M J, Pooni H S. The Genetical Analysis of Quantitative Traits. London: Chapman and Hall, 1996. p 65 [2]Huang X Q, Cloutier S, Lycar L, Radovanovic N, Humphreys D G, Noll J S, Somers D J, Brown P D. Molecular detection of QTLs for agronomic and quality traits in a doubled haploid population derived from two Canadian wheats (Triticum aestivum L.). Theor Appl Genet, 2006, 113: 753-766 [3]B?rner A, Schumann E, Furste A, Coster H, Leithold B, R?der M S, Weber W E. Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theor Appl Genet, 2002, 105: 921-936 [4]Li S S, Jia J Z, Wei X Y, Zhang X C, Li L Z, Chen H M, Fan Y D, Sun H Y, Zhao X H, Lei T D, Xu Y F, Jiang F S, Wang H G, Li L H. A intervarietal genetic map and QTL analysis for yield traits in wheat. Mol Breed, 2007, 20: 167-178 [5]Kuchel H, Williams K, Langridge P, Eagles H A, Jefferies S P. Ge- netic dissection of grain yield in bread wheat: II. QTL-by-environ- ment interaction. Theor Appl Genet, 2007, 115: 1015-1027 [6]Kumar K, Kulwal P L, Balyan H S, Gupta P K. QTLmapping for yield and yield contributing traits in two mapping populations of bread wheat. Mol Breed, 2007, 19: 167-177 [7]Ma Z, Zhao D, Zhang C, Zhang Z, Xue S, Lin F, Kong Z, Tian D, Luo Q. Molecular genetic analysis of five spike-related traits in wheat using RIL and immortalized F2 populations. Mol Gen Ge-nomics, 2007, 277: 31-42 [8]Torada A, Koike M, Mochida K, Ogihara Y. SSR-based linkage map with new markers using an intraspecific population of com-mon wheat. Theor Appl Genet, 2006, 112: 1042-1051 [9]Wang D L, Zhu J, Li Z K, Paterson A H. Mapping QTLs with epistatic effects and QTL × environment interactions by mixed lin-ear model approaches. Theor Appl Genet, 1999, 99: 1255-1264 [10]Yang J, Zhu J. Predicting superior genotypes in multiple envi-ronments based on QTL effects. Theor Appl Genet, 2005, 110: 1268-1274 [11]Hai Y(海燕), Kang M-H(康明辉). Breeding of a new wheat vari-ety Huapei 3 with high yield and early maturing. Henan Agric Sci (河南农业科学), 2007, (5): 36-37 (in Chinese) [12]Guo C-Q(郭春强), Bai Z-A(柏志安), Liao P-A(廖平安), Jin W-K(靳文奎). New high quality and yield wheat variety Yumai 57. China Seed (中国种业), 2004, (4): 54 (in Chinese) [13]Zhang K P, Zhao L, Tian J C, Chen G F, Jiang X L, Liu B. A ge-netic map conducted using a doubled haploid population derived from two elite Chinese common wheat (Triticum aestivum L.) varieties. J Integr Plant Biol, 2008, 50: 941-950 [14]Cao G, Zhu J, He C, Gao Y, Yan J, Wu P. Impact of epistasis and QTL × environment interaction on the developmental behavior of plant height in rice (Oryza sativa L.). Theor Appl Genet, 2001, 103: 153-160 [15]Narasimhamoorthy B, Gill B S, Fritz A K, Nelson J C, Brown-Guedira G L. Advanced backcross QTL analysis of a hard winter wheat × synthetic wheat population. Theor Appl Genet, 2006, 112: 787-796 [16]Huang X Q, C?ster H, Ganal M W, R?der M S. Advanced back-cross QTL analysis for the identification of quantitative trait loci alleles from wild relatives of wheat (Triticum aestivum L.). Theor Appl Genet, 2003, 106: 1379-1389 [17]Rebetzke G J, Richards R A, Fischer V M, Mickelson B J. Breeding long coleoptile, reduced height wheats. Euphytica, 1999, 106: 159-168 [18]Korzun V, R?der M S, Ganal M W, Worland A J, Law C N. Ge-netic analysis of the dwarfing gene (Rht8) in wheat: Part I. Mo-lecular mapping of Rht8 on the short arm of chromosome 2D of bread wheat (Triticum aestivum L.). Theor Appl Genet, 1998, 96: 1104-1109 [19]Groos C, Robert N, Bervas E, Charmet G. Genetic analysis of grain protein-content, grain yield and thousand-kernel weight in bread wheat. Theor Appl Genet, 2003, 106: 1032-1040 [20]Jiang K-F(蒋开锋), Zheng J-K(郑家奎). Yield component traits of hybrid rice stability and its relativity research. Chin J Rice Sci (中国水稻科学), 2001, 15(1): 67-69 (in Chinese with English abstract) |
[1] | 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102. |
[2] | 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758. |
[3] | 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395. |
[4] | 张波, 裴瑞琴, 杨维丰, 朱海涛, 刘桂富, 张桂权, 王少奎. 利用单片段代换系鉴定巴西陆稻IAPAR9中的粒型基因[J]. 作物学报, 2021, 47(8): 1472-1480. |
[5] | 韩玉洲, 张勇, 杨阳, 顾正中, 吴科, 谢全, 孔忠新, 贾海燕, 马正强. 小麦株高QTL Qph.nau-5B的效应评价[J]. 作物学报, 2021, 47(6): 1188-1196. |
[6] | 周新桐, 郭青青, 陈雪, 李加纳, 王瑞. GBS高密度遗传连锁图谱定位甘蓝型油菜粉色花性状[J]. 作物学报, 2021, 47(4): 587-598. |
[7] | 郑迎霞, 陈杜, 魏鹏程, 卢平, 杨锦越, 罗上轲, 叶开梅, 宋碧. 种植密度对贵州春玉米茎秆抗倒伏性能及籽粒产量的影响[J]. 作物学报, 2021, 47(4): 738-751. |
[8] | 靳义荣, 刘金栋, 刘彩云, 贾德新, 刘鹏, 王雅美. 普通小麦氮素利用效率相关性状全基因组关联分析[J]. 作物学报, 2021, 47(3): 394-404. |
[9] | 沈文强, 赵冰冰, 于国玲, 李凤菲, 朱小燕, 马福盈, 李云峰, 何光华, 赵芳明. 优良水稻染色体片段代换系Z746的鉴定及重要农艺性状QTL定位及其验证[J]. 作物学报, 2021, 47(3): 451-461. |
[10] | 黄义文, 代旭冉, 刘宏伟, 杨丽, 买春艳, 于立强, 于广军, 张宏军, 李洪杰, 周阳. 小麦多酚氧化酶基因Ppo-A1和Ppo-D1位点等位变异与穗发芽抗性的关系[J]. 作物学报, 2021, 47(11): 2080-2090. |
[11] | 胡鑫慧, 谷淑波, 朱俊科, 王东. 分期施钾对不同质地土壤麦田冬小麦干物质积累和产量的影响[J]. 作物学报, 2021, 47(11): 2258-2267. |
[12] | 张平平,姚金保,王化敦,宋桂成,姜朋,张鹏,马鸿翔. 江苏省优质软麦品种品质特性与饼干加工品质的关系[J]. 作物学报, 2020, 46(4): 491-502. |
[13] | 刘代铃,谢俊锋,何乾瑞,陈四维,胡跃,周佳,佘跃辉,刘卫国,杨文钰,武晓玲. 净作和套作下大豆贮藏蛋白11S、7S组分相对含量的QTL分析[J]. 作物学报, 2020, 46(3): 341-353. |
[14] | 吴海涛, 张勇, 苏伯鸿, Lamlom F Sobhi, 邱丽娟. 大豆分枝数相关分子标记开发及qBN-18位点精细定位[J]. 作物学报, 2020, 46(11): 1667-1677. |
[15] | 王存虎,刘东,许锐能,杨永庆,廖红. 大豆叶柄角的QTL定位分析[J]. 作物学报, 2020, 46(01): 9-19. |
|