欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (2): 270-278.doi: 10.3724/SP.J.1006.2009.00270

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

小麦籽粒产量及穗部相关性状的QTL定位

张坤普1,2;徐宪斌3;田纪春1,*   

  1. 1国家作物生物学重点实验室/山东农业大学小麦品质育种研究室,山东泰安27108;2中国科学院遗传与发育生物学研究所,北京100101;3德州市农业科学研究院,山东德州253015
  • 收稿日期:2008-06-11 修回日期:2008-09-03 出版日期:2009-02-12 网络出版日期:2008-12-11
  • 通讯作者: 田纪春
  • 基金资助:

    本研究由国家自然科学基金项目(30671270),国家高技术研究发展计划(863计划)项目(2006AA10Z1E9和2006AA100101),山东省良种工程项目(LN2006-6)资助。

QTL Mapping for Grain Yield and Spike Related Traits in Common Wheat

ZHANG Kun-Pu1,2, XU Xian-Bin3,TIAN Ji-Chun1,*   

  1. 1State Key Laboratory of Crop Biology/Group of Quality Wheat Breeding, Shandong Agricultural University,Tai'an 271018,China;2Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101,China;3Dezhou Academy of Agricultural Sciences, Dezhou 253015,China
  • Received:2008-06-11 Revised:2008-09-03 Published:2009-02-12 Published online:2008-12-11
  • Contact: TIAN Ji-Chun

摘要:

由小麦品种花培3号和豫麦57杂交获得DH群体168个株系,种植于3个环境中,利用305SSR标记对籽粒产量和穗部相关性状(穗长、穗粒数、总小穗数、可育小穗数、小穗着生密度、千粒重和粒径)进行了QTL定位。利用基于混合线性模型的QTLNetwork 2.0软件共检测到27个加性效应和13对上位效应位点其中 8个加性效应位点具有环境互作效应。相关性高的性状间有一些共同的QTL位点,表现出一因多效或紧密连锁效应。5D染色体区段Xwmc215Xgdm63检测到控制籽粒产量、穗粒数、总小穗数、可育小穗数和小穗着生密度5个性状的QTL位点,各位点的遗传贡献率较大且遗传效应方向相同,增效等位基因均来源于豫麦57适用于分子标记辅助育种和聚合育种。控制千粒重与穗粒数的QTL位于染色体不同区段有利于实现穗粒数与粒重的遗传重组。

关键词: 普通小麦, 籽粒产量, 分子标记辅助选择, QTL定位, 穗部相关性状

Abstract:

Grain yield and spike related traits are complex traits in wheat (Triticum aestivum L.). They are often influenced by environmental factors and show a high genotype-environment interaction. Thus, determination of the number, locations, effects of these polygenes is desired for obtaining optimal genotypes in breeding practice. To detect QTLs associated with wheat yield, such as grain yield, spike length, grains pe spike, spikelets per spike, compactness, fertile spikelets per spike, thousand-grain weight, and grain diameter a set of 168 doubled haploid (DH) lines derived from the cross between Huapei 3 and Yumai 57 were used with 305 SSR markers covering the whole wheat genome. The DH population and the parents were evaluated for grain yield and spike related traits in 2005 and 2006 cropping seasons in Taian, Shandong province and in 2006 cropping season in Suzhou, Anhui province. QTL analyses were performed using the software of QTLNetwork version 2.0 based on the mixed linear model. A total of 27 additive QTLs and 13 pairs of epistatic QTLs were detected for grain yield and spike related traits. Of these, eight additive QTLs had significant interactions with environments. Many of the traits shared the same QTL, which was consistent with its high phenotypic correlations and showed tight linkages or pleiotropisms. The Xwmc215–Xgdm63interval on chromosome 5D had the same direction of additive effects on grain yield, grains pr spike, spikelets per spike, compactness, and fertile spikelets per spike with high contribution, which showed pleiotropisms and could be used in marker-assisted selection. And the favorable alleles were contributed by Yumai 57. The QTLs for thousand-grain weight were located on different intervals from the QTLs for grains per spike, which was beneficial to genetic recombinant for them in wheat breeding programs.

Key words: Common wheat(Triticum aestivum L.), Grain yield, Marker-assisted selection, QTL mapping, Spike related trait

[1]Kearsey M J, Pooni H S. The Genetical Analysis of Quantitative Traits. London: Chapman and Hall, 1996. p 65
[2]Huang X Q, Cloutier S, Lycar L, Radovanovic N, Humphreys D G, Noll J S, Somers D J, Brown P D. Molecular detection of QTLs for agronomic and quality traits in a doubled haploid population derived from two Canadian wheats (Triticum aestivum L.). Theor Appl Genet, 2006, 113: 753-766
[3]B?rner A, Schumann E, Furste A, Coster H, Leithold B, R?der M S, Weber W E. Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theor Appl Genet, 2002, 105: 921-936
[4]Li S S, Jia J Z, Wei X Y, Zhang X C, Li L Z, Chen H M, Fan Y D, Sun H Y, Zhao X H, Lei T D, Xu Y F, Jiang F S, Wang H G, Li L H. A intervarietal genetic map and QTL analysis for yield traits in wheat. Mol Breed, 2007, 20: 167-178
[5]Kuchel H, Williams K, Langridge P, Eagles H A, Jefferies S P. Ge- netic dissection of grain yield in bread wheat: II. QTL-by-environ- ment interaction. Theor Appl Genet, 2007, 115: 1015-1027
[6]Kumar K, Kulwal P L, Balyan H S, Gupta P K. QTLmapping for yield and yield contributing traits in two mapping populations of bread wheat. Mol Breed, 2007, 19: 167-177
[7]Ma Z, Zhao D, Zhang C, Zhang Z, Xue S, Lin F, Kong Z, Tian D, Luo Q. Molecular genetic analysis of five spike-related traits in wheat using RIL and immortalized F2 populations. Mol Gen Ge-nomics, 2007, 277: 31-42
[8]Torada A, Koike M, Mochida K, Ogihara Y. SSR-based linkage map with new markers using an intraspecific population of com-mon wheat. Theor Appl Genet, 2006, 112: 1042-1051
[9]Wang D L, Zhu J, Li Z K, Paterson A H. Mapping QTLs with epistatic effects and QTL × environment interactions by mixed lin-ear model approaches. Theor Appl Genet, 1999, 99: 1255-1264
[10]Yang J, Zhu J. Predicting superior genotypes in multiple envi-ronments based on QTL effects. Theor Appl Genet, 2005, 110: 1268-1274
[11]Hai Y(海燕), Kang M-H(康明辉). Breeding of a new wheat vari-ety Huapei 3 with high yield and early maturing. Henan Agric Sci (河南农业科学), 2007, (5): 36-37 (in Chinese)
[12]Guo C-Q(郭春强), Bai Z-A(柏志安), Liao P-A(廖平安), Jin W-K(靳文奎). New high quality and yield wheat variety Yumai 57. China Seed (中国种业), 2004, (4): 54 (in Chinese)
[13]Zhang K P, Zhao L, Tian J C, Chen G F, Jiang X L, Liu B. A ge-netic map conducted using a doubled haploid population derived from two elite Chinese common wheat (Triticum aestivum L.) varieties. J Integr Plant Biol, 2008, 50: 941-950
[14]Cao G, Zhu J, He C, Gao Y, Yan J, Wu P. Impact of epistasis and QTL × environment interaction on the developmental behavior of plant height in rice (Oryza sativa L.). Theor Appl Genet, 2001, 103: 153-160
[15]Narasimhamoorthy B, Gill B S, Fritz A K, Nelson J C, Brown-Guedira G L. Advanced backcross QTL analysis of a hard winter wheat × synthetic wheat population. Theor Appl Genet, 2006, 112: 787-796
[16]Huang X Q, C?ster H, Ganal M W, R?der M S. Advanced back-cross QTL analysis for the identification of quantitative trait loci alleles from wild relatives of wheat (Triticum aestivum L.). Theor Appl Genet, 2003, 106: 1379-1389
[17]Rebetzke G J, Richards R A, Fischer V M, Mickelson B J. Breeding long coleoptile, reduced height wheats. Euphytica, 1999, 106: 159-168
[18]Korzun V, R?der M S, Ganal M W, Worland A J, Law C N. Ge-netic analysis of the dwarfing gene (Rht8) in wheat: Part I. Mo-lecular mapping of Rht8 on the short arm of chromosome 2D of bread wheat (Triticum aestivum L.). Theor Appl Genet, 1998, 96: 1104-1109
[19]Groos C, Robert N, Bervas E, Charmet G. Genetic analysis of grain protein-content, grain yield and thousand-kernel weight in bread wheat. Theor Appl Genet, 2003, 106: 1032-1040
[20]Jiang K-F(蒋开锋), Zheng J-K(郑家奎). Yield component traits of hybrid rice stability and its relativity research. Chin J Rice Sci (中国水稻科学), 2001, 15(1): 67-69 (in Chinese with English abstract)
[1] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[2] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[3] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[4] 张波, 裴瑞琴, 杨维丰, 朱海涛, 刘桂富, 张桂权, 王少奎. 利用单片段代换系鉴定巴西陆稻IAPAR9中的粒型基因[J]. 作物学报, 2021, 47(8): 1472-1480.
[5] 韩玉洲, 张勇, 杨阳, 顾正中, 吴科, 谢全, 孔忠新, 贾海燕, 马正强. 小麦株高QTL Qph.nau-5B的效应评价[J]. 作物学报, 2021, 47(6): 1188-1196.
[6] 周新桐, 郭青青, 陈雪, 李加纳, 王瑞. GBS高密度遗传连锁图谱定位甘蓝型油菜粉色花性状[J]. 作物学报, 2021, 47(4): 587-598.
[7] 郑迎霞, 陈杜, 魏鹏程, 卢平, 杨锦越, 罗上轲, 叶开梅, 宋碧. 种植密度对贵州春玉米茎秆抗倒伏性能及籽粒产量的影响[J]. 作物学报, 2021, 47(4): 738-751.
[8] 靳义荣, 刘金栋, 刘彩云, 贾德新, 刘鹏, 王雅美. 普通小麦氮素利用效率相关性状全基因组关联分析[J]. 作物学报, 2021, 47(3): 394-404.
[9] 沈文强, 赵冰冰, 于国玲, 李凤菲, 朱小燕, 马福盈, 李云峰, 何光华, 赵芳明. 优良水稻染色体片段代换系Z746的鉴定及重要农艺性状QTL定位及其验证[J]. 作物学报, 2021, 47(3): 451-461.
[10] 黄义文, 代旭冉, 刘宏伟, 杨丽, 买春艳, 于立强, 于广军, 张宏军, 李洪杰, 周阳. 小麦多酚氧化酶基因Ppo-A1Ppo-D1位点等位变异与穗发芽抗性的关系[J]. 作物学报, 2021, 47(11): 2080-2090.
[11] 胡鑫慧, 谷淑波, 朱俊科, 王东. 分期施钾对不同质地土壤麦田冬小麦干物质积累和产量的影响[J]. 作物学报, 2021, 47(11): 2258-2267.
[12] 张平平,姚金保,王化敦,宋桂成,姜朋,张鹏,马鸿翔. 江苏省优质软麦品种品质特性与饼干加工品质的关系[J]. 作物学报, 2020, 46(4): 491-502.
[13] 刘代铃,谢俊锋,何乾瑞,陈四维,胡跃,周佳,佘跃辉,刘卫国,杨文钰,武晓玲. 净作和套作下大豆贮藏蛋白11S、7S组分相对含量的QTL分析[J]. 作物学报, 2020, 46(3): 341-353.
[14] 吴海涛, 张勇, 苏伯鸿, Lamlom F Sobhi, 邱丽娟. 大豆分枝数相关分子标记开发及qBN-18位点精细定位[J]. 作物学报, 2020, 46(11): 1667-1677.
[15] 王存虎,刘东,许锐能,杨永庆,廖红. 大豆叶柄角的QTL定位分析[J]. 作物学报, 2020, 46(01): 9-19.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!