作物学报 ›› 2009, Vol. 35 ›› Issue (2): 334-340.
韦存虚1;张军1;周卫东2;陈义芳2;许如根3
WEI Cun-Xu1,ZHANG Jun1,ZHOU Wei-Dong2,CHEN Yi-Fang2,XU Ru-Gen3
摘要:
利用光学显微镜和电子显微镜技术观察了大麦胚乳发育过程中贮藏蛋白的积累和蛋白体的形成。抽穗后8 d的胚乳细胞,富含内质网和蛋白贮藏液泡(PSV),少量淀粉粒沿细胞核或细胞膜分布。贮藏蛋白颗粒在抽穗后10 d的胚乳细胞中开始出现,内质网的腔膨大,积累贮藏蛋白,后脱离内质网形成蛋白体。在胚乳细胞生长分化早期,蛋白体呈球状进入PSV;随着胚乳发育,贮藏蛋白体急剧增多,以亚糊粉层细胞为主。在胚乳细胞生长分化中期,PSV充满蛋白体,其周围有电子致密物质;新产生的蛋白体在细胞质基质中呈球状聚集在一起。在胚乳细胞生长分化后期,PSV中的部分蛋白体或者细胞质基质中的部分蛋白体开始相互融合,同时内质网衍生出许多小蛋白体分散在淀粉粒之间。在胚乳发育成熟期,蛋白体相互融合形成无定形的蛋白质基质分布在淀粉粒间的间隙中。结果表明,大麦胚乳发育过程中,内质网衍生出蛋白体,聚集于PSV或细胞质基质中,然后相互融合形成成熟籽粒的蛋白质基质。
[1] Tang H, Watanabe K, Mitsunaga T. Structure and functionality of large, medium and small granule starches in normal and waxy barley endosperms. Carbohydrate Polymers, 2002, 49: 217–224 [2] Kumamaru T, Ogawa M, Satoh H, Okita T W. Protein body bio-genesis in cereal endosperms. In: Olsen O A ed.. Plant Cell Monogr (8): Endosperm. Heidelberg: Springer-Verlag Berlin, 2007. pp 141–158 [3] Wang J-M(汪军妹), Zhang G-P(张国平). Advance in studies on grain protein content in barley. Barley Sci (大麦科学), 1999, 10(3): 9–11 (in Chinese with English abstract) [4] Shewry P R, Franklin J, Parmar S, Smith S J, Miflin B J. The ef-fects of sulphur starvation on the amino acid and protein compo-sitions of barley grain. J Cereal Sci, 1983, 1: 21–31 [5] Wang Z(王忠), Gu Y-J(顾蕴洁), Li W-F(李卫芳), Lian X-M(练兴明), Chen G(陈刚). The study about development of barley endosperm. Sci Agric Sin (中国农业科学) , 1996, 29(6): 38–45 (in Chinese with English abstract) [6] Xi X-Y(席湘媛), Ye B-X(叶宝兴). Relationship between embryo and endosperm development and accumulation of storage re-serves in barley. Acta Bot Sin (植物学报), 1997, 39(10): 905–913 (in Chinese with English abstract) [7] Wang M(王萌), Zhou Z(周舟), Lan S-Y(蓝盛银), Xu Z-X(徐珍秀). The accumulation of starch and storage protein in starchy endosperm cells of different barleys. Sci Agric Sin (中国农业科学), 2004, 37(10): 1464–1467 (in Chinese with English abstract) [8] Miflin B J, Burgess S R, Shewry P R. The development of protein bodies in the storage tissues. J Exp Bot, 1981, 32: 199–219 [9] Mogelsvang S, Simpson D J. Changes in the levels of seven pro-tein involved in polypeptide folding and transport during en-dosperm development of two barley genotypes differing in stor-age protein localisation. Plant Mol Biol, 1998, 36: 541–552 [10] Galili G, Herman E M. Protein bodies: storage vacuoles in seeds. Adv Bot Res, 1997, 25: 113–140 [11] Richard G, Turner M P F, Napier J A, Shewry P R. Transport and deposition of cereal prolamins. Plant Physiol Biochem, 1996, 34: 237–243 [12] Wei C-X(韦存虚), Lan S-Y(蓝盛银), Xu Z-X(徐珍秀). Forma-tion of protein bodies in the developing endosperm cells of rice. Acta Agron Sin (作物学报), 2002, 28(5): 591–594 (in Chinese with English abstract) [13] Mu X-J(母锡金). Technology of thin section. In: Sun J-S(孙敬三), Qian Y-Q(钱迎倩). Methods for Plant Cell Biology (植物细胞学研究方法). Beijing: Science Press, 1987. pp 1–40 (in Chi-nese) [14] Dang J M, Copeland L. Studies of the fracture surface of rice grains using environmental scanning electron microscopy. J Sci Food Agric, 2004, 84: 707–713 [15] Bethke P C, Hillmer S, Jones R L. Isolation of intact protein stor-age vacuoles from barley aleurone. Plant Physiol, 1996, 110: 521–529 [16] Loussert C, Popineau Y, Mangavel C. Protein bodies ontogeny and localization of prolamin components in the developing en-dosperm of wheat caryopses. J Cereal Sci, 2008, 47: 445–456 [17] Yamagata H, Sugimoto T, Tanaka K, Kasai Z. Biosynthesis of storage proteins in developing rice seeds. Plant Physiol, 1982, 70: 1094–1100 [18] Lending C R, Larkins B A. Changes in the zein composition of protein bodies during maize endosperm development. Plant Cell, 1989, 1: 1011–1023 [19] Takahashi H, Saito Y, Kitagawa Y, Morita S, Masumura T, Ta-naka K. A novel vesicle derived directly from endoplasmic re-ticulum is involved in the transport of vacuolar storage proteins in rice endosperm. Plant Cell Physiol, 2005, 46: 245–249 [20] Levanony H, Rubin R, Altschuler Y, Galili G. Evidence for a novel route of wheat storage proteins to vacuoles. J Cell Biol, 1992, 119: 1117–1128 |
[1] | 杨谨, 白爱宁, 白雪, 陈娟, 郭林, 刘春明. 水稻胚胎和胚乳双缺陷突变体eed1的表型与遗传分析[J]. 作物学报, 2022, 48(2): 292-303. |
[2] | 贺军与, 钟伟, 陈云琼, 王卫斌, 熊静蕾, 蒋亚丽, 施辉蒙, 陈升位. 大麦籽粒发育进程中7种黄酮类化合物的积累特性分析[J]. 作物学报, 2021, 47(8): 1624-1630. |
[3] | 耿腊, 黄业昌, 李梦迪, 谢尚耿, 叶玲珍, 张国平. 大麦籽粒β-葡聚糖含量的全基因组关联分析[J]. 作物学报, 2021, 47(7): 1205-1214. |
[4] | 张帆, 杨茜. 大麦-双季稻轮作体系有机物料与化肥配施对大麦资源利用效率及产量的影响[J]. 作物学报, 2021, 47(12): 2522-2531. |
[5] | 徐婷婷, 汪巧玲, 邹淑琼, 狄佳春, 杨欣, 朱银, 赵涵, 颜伟. 基于高通量测序的大麦InDel标记开发及应用[J]. 作物学报, 2020, 46(9): 1340-1350. |
[6] | 韩展誉,管弦悦,赵倩,吴春艳,黄福灯,潘刚,程方民. 灌浆温度和氮肥及其互作效应对稻米贮藏蛋白组分的影响[J]. 作物学报, 2020, 46(7): 1087-1098. |
[7] | 刘代铃,谢俊锋,何乾瑞,陈四维,胡跃,周佳,佘跃辉,刘卫国,杨文钰,武晓玲. 净作和套作下大豆贮藏蛋白11S、7S组分相对含量的QTL分析[J]. 作物学报, 2020, 46(3): 341-353. |
[8] | 徐银萍, 潘永东, 刘强德, 姚元虎, 贾延春, 任诚, 火克仓, 陈文庆, 赵锋, 包奇军, 张华瑜. 大麦种质资源成株期抗旱性鉴定及抗旱指标筛选[J]. 作物学报, 2020, 46(3): 448-461. |
[9] | 杨晓梦, 李霞, 普晓英, 杜娟, Muhammad Kazim Ali, 杨加珍, 曾亚文, 杨涛. 大麦重组自交系群体籽粒总花色苷含量和千粒重QTL定位[J]. 作物学报, 2020, 46(01): 52-61. |
[10] | 时丽洁,蒋枞璁,王方梅,杨平,冯宗云. 大麦蛋白质二硫键异构酶基因家族的鉴定与表达分析[J]. 作物学报, 2019, 45(9): 1365-1374. |
[11] | 袁莉民, 展明飞, 章星传, 王志琴, 杨建昌. 水稻穗上不同粒位籽粒胚乳结构及其结实期灌溉方式对它的调控作用[J]. 作物学报, 2018, 44(02): 245-259. |
[12] | 胡德益,蔡露,陈光登,张锡洲,刘春吉. 不同磷水平下大麦分蘖期磷效率相关性状QTL定位分析[J]. 作物学报, 2017, 43(12): 1746-1759. |
[13] | 高佳,史建国,董树亭,刘鹏,赵斌,张吉旺*. 夏玉米籽粒胚乳细胞增殖及产量对不同光照的响应[J]. 作物学报, 2017, 43(10): 1548-1558. |
[14] | 刘会云,王婉晴,李欣,王轲,王龙,杜丽璞,晏月明,叶兴国. 小麦突变体AS208中Glu-B1位点缺失对籽粒中蛋白体形成和储藏蛋白合成与加工相关基因表达的影响[J]. 作物学报, 2017, 43(05): 691-700. |
[15] | 赵德辉,阎俊,黄玉莲,夏先春,张艳,田宇兵,何中虎,张勇. 1BL/1RS易位对小麦贮藏蛋白组分含量和面团流变学特性的影响[J]. 作物学报, 2015, 41(11): 1648-1656. |
|