欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (2): 324-333.doi: 10.3724/SP.J.1006.2009.00324

• 耕作栽培·生理生化 • 上一篇    下一篇

灌水量对小麦籽粒粉含量和相关酶活性及水分利用效率的影响

褚鹏飞1;于振文1,*;王小燕2;武同华3;王西芝3   

  1. 1山东农业大学农业部作物生理生态与栽培重点开放实验室,山东泰安271018;2长江大学农学院,湖北荆州434025;3山东省兖州市农业科学研究所,山东兖州271000
  • 收稿日期:2008-07-21 修回日期:2008-10-24 出版日期:2009-02-12 网络出版日期:2008-12-11
  • 通讯作者: 于振文
  • 基金资助:

    本研究由农业部农业结构调整重大技术研究专项(06-03-04B),国家自然科学基金项目(30871478)资助

Effects of Irrigation Amount on Grain Starch Content, Starch Synthase Activity, and Water Use Efficiency in Wheat

CHU Peng-Fei1, YU Zhen-Wen1,*,WANG Xiao-Yan2,WU Tong-Hua3,WANG Xi-Zhi3   

  1. 1Key Laboratory of Crop Ecophysiology and Cultivation, Ministry of Agriculture, Shandong Agricultural University, Tai'an 271018,China;2Agronomy College, Yangtze University,Jingzhou 434025,Hubei;3Institute of Agricultural Sciences of Yanzhou City, Yanzhou 272000,China
  • Received:2008-07-21 Revised:2008-10-24 Published:2009-02-12 Published online:2008-12-11
  • Contact: YU Zhen-Wen

摘要:

2004—2005年和2005—2006年小麦生长季,设置不同的灌水时期和灌水量处理,研究了小麦籽粒产量、籽粒淀粉含量、淀粉合成相关酶活性和水分利用效率。结果表明,全生育期不灌水条件下,籽粒中的可溶性淀粉合酶(SSS)和淀粉粒结合态淀粉合酶(GBSS)活性在灌浆初期显著升高,在灌浆中后期显著降低,同时灌浆后期支链淀粉、直链淀粉和总淀粉含量亦显著降低。拔节期和开花期每次灌水60 mm有利于小麦在灌浆中后期保持较高的SSSGBSS活性,提高灌浆后期籽粒中的支链淀粉、直链淀粉和总淀粉含量;灌水量进一步增加时,灌浆中后期的SSS活性显著降低,GBSS活性升高,灌浆后期的支链淀粉含量降低,直链淀粉含量升高。在两个生长季中拔节期和开花期每次灌水60 mm处理的土壤贮水消耗量较高,水分利用效率最高和籽粒产量较高。在此基础上增加灌水量时,开花至成熟阶段0~60 cm土层的土壤含水量显著升高,土壤贮水消耗量降低,籽粒产量无显著变化,水分利用效率和灌溉水利用效率降低。

关键词: 小麦, 灌水量, 淀粉含量, 淀粉合成酶活性, 水分利用效率

Abstract:

Water deficiency is one of the main factors limiting wheat (Triticum aestivum L.) production. Grain starch, which comprises 65–70% of the dry weight in grains, is influenced by some eco-environmental factors, such as temperature and water content in soils. To study the effects of irrigation stage and amount on grain yield and water use efficiency (WUE), field experiments were carried out in Tai’an and Yanzhou, Shandong Province in 2004–2006 growing seasons with a high-yielding wheat cultivar Jimai 20. The water contents of soil layers within 0–140 cm (2004–2005) or 0–200 cm (2005–2006) were monitored under different irrigation regimes. The treatments of irrigation were at jointing and anthesis stages (W1), and at jointing, anthesis and grain filling stages (W2) with 60 mm water each time in 2004–2005 growing season as well as at jointing and anthesis stages in 2005–2006 growing season with 30 mm (deficient irrigation), 60 mm (moderate irrigation), or 90 mm (luxury irrigation) water per irrigation. No irrigation was taken as the control. The grain starch content and the relative enzyme activity were measured at every 7 d interval after anthesis.The soluble starch synthase (SSS) activity and granule bound starch synthase (GBSS) activity significantly increased at early filling stage and reduced from middle to late filling stage, and the contents of amylopectin, amylose, and starch significantly reduced at late filling stage in the control. Moderate irrigation at jointing and anthesis with 60 mm water each time was in favor of keeping high activities of SSS and GBSS from middle to late grain filling stages. The moderate irrigation had higher levels on the contents of amylopectin, amylose, and starch at late filling stage than the control. However over irrigation significantly reduced the SSS activity and significantly increased the GBSS activity at middle and late filling stages, while over irrigation significantly reduced the amylopectin content and significantly increased the amylose content at late filling stage. Moderate irrigation at jointing and anthesis with 60 mm water each time obtained the highest WUE in the both growing seasons. Over irrigation significantly increased the soil moisture content in 0–60 cm soil layers, significantly reduced the soil water consumption amount, WUE and irrigation water use efficiency, and not significantly increased grain yield.

Key words: Wheat, Irrigation amount, Starch content, Starch synthase activity, Water use efficiency

[1] Wang S-F(王淑芬), Zhang X-Y(张喜英), Pei D(裴东). Impacts of different water supplied conditions on root distribution, yield and water utilization efficiency of winter wheat. Trans CSAE (农业工程学报), 2006, 22(2): 27–32 (in Chinese with English ab-stract)
[2] Kang S-Z(康绍忠), Hu X-T(胡笑涛), Cai H-J(蔡焕杰), Feng S-Y(冯绍元). New ideas and development tendency of theory for water saving in modern agriculture and ecology. J Hydraulic Eng (水利学报), 2004, 35(12): 1–7 (in Chinese with English abstract)
[3] Li F M, Liu X L, Li S Q. Effects of early soil water distribution on the dry matter partition between roots and shoots of winter wheat. Agric Water Manag, 2001, 49: 163–171
[4] Ewert F, Rodriguez D, Jamieson P, Semenov M A, Mitchell R A C, Goudriaan J, Porter J R, Kimball B A, Pinter P J, Mander-scheid R, Weigel H J, Fangmeier A, Fereres E, Villalobos F. Ef-fects of elevated CO2 and drought on wheat: testing crop simula-tion models for different experimental and climatic conditions. Agric Ecosyst Environ, 2002, 93: 249–266
[5] Shah N H, Paulsen G M. Interaction of drought and high tem-perature on photosynthesis and grain-filling of wheat. Plant Soil, 2003, 257: 219–226
[6] Xu Z Z, Yu Z W. Nitrogen metabolism in flag leaf and grain of wheat in response to irrigation regimes. J Plant Nutr Soil Sci, 2006, 169: 118–126
[7] Fan X-M(范雪梅), Jiang D(姜东), Dai T-B(戴廷波), Jing Q(荆奇), Cao W-X(曹卫星). Effects of nitrogen supply on flag leaf photosynthesis and grain starch accumulation of wheat from its anthesis to maturity under drought or waterlogging. Chin J Appl Ecol (应用生态学报), 2005, 16(10): 1883–1888 (in Chinese with English abstract)
[8] Hu M-Y(胡梦芸), Zhang Z-B(张正斌), Xu P(徐萍), Dong B-D(董宝娣), Li W-Q(李魏强), Li J-J(李景娟). Relationship of water use efficiency with photoassimilate accumulation and transport in wheat under deficit irrigation. Acta Agron Sin (作物学报), 2007, 33(11): 1884–1891 (in Chinese with English ab-stract)
[9] Morell M K, Cathle R. The biochemistry and molecular biology of starch synthesis in cereals. Aust J Plant Physiol, 1995, 22: 647–660
[10] Panozzo J F, Eagles H A. Cultivar and environmental effects on quality characters in wheat: I. Starch. Aust J Agric Res, 1998, 49: 757–766
[11] Morris C F, Shackley B J, King G E, Kidwell K K. Genotypic and environmental variation for flour swelling volume in wheat. Cereal Chem, 1997, 74: 16–21
[12] Jenner C F. Starch synthesis in the kernel of wheat under high temperature conditions. Aust J Plant Physiol, 1994, 21: 791-806
[13] Blumenthal C, Rawson H M, McKenzie E, Gras P W, Barlow E W R, Wrigley C W. Changes in wheat grain quality due to dou-bling the level of atmospheric CO2. Cereal Chem, 1996, 73: 762–766
[14] Westgate M E. Water status and development of the maize en-dosperm and embryo during drought. Crop Sci, 1994, 34: 76–83
[15] Duffus C M. Control of starch biosynthesis in developing cereal grain. Biochem Society Trans, 1992, 20: 13–18
[16] Jenner C F, Ugalde T D, Aspinall D. The physiology of starch and protein deposition in the endosperm of wheat. Aust J Plant Physiol, 1991, 18: 211–226
[17] Ahmadi A, Baker D A. The effect of water stress on the activities of key regulatory enzymes of the sucrose to starch pathway in wheat. Plant Growth Regul, 2001, 35: 81–91
[18] Lingle S E, Chevalier P. Movement and metabolism of sucrose in developing barley kernels. Crop Sci, 1984, 24: 315–319
[19] Xu Z-Z(许振柱), Yu Z-W(于振文), Zhang Y-L(张永丽). The ef-fects of soil moisture on grain starch synthesis and accumulation of winter wheat. Acta Agron Sin (作物学报), 2003, 29(4): 595–600 (in Chinese with English abstract)
[20] Liu Z-J(刘增进), Li B-P(李宝萍), Li Y-H(李远华), Cui Y-L(崔远来). Research on the water use efficiency and optimal irriga-tion schedule of the winter wheat. Trans CSAE (农业工程学报), 2004, 20(4): 58–63 (in Chinese with English abstract)
[21] Jiang X-D(江晓东), Li Z-J(李增嘉), Hou L-T(侯连涛), Wang Y(王芸), Wang X(王雪), Yan H(颜红). Impacts of minimum tillage and no-tillage systems on soil NO3--N content and water use efficiency of winter wheat/ summer corn cultivation. Trans CSAE (农业工程学报), 2005, 21(7): 20–24 (in Chinese with English abstract)
[22] He Z-F(何照范). Analysis Technique for Grain Quality of Ce-reals and Oils (粮油籽粒品质及其分析技术). Beijing: China Agriculture Press, 1985. pp 290–294 (in Chinese)
[23] Nakamura Y, Yuki K, Park S Y, Ohya T. Carbohydrate metabo-lism in the developing endosperm of rice grains. Plant Cell Physiol, 1989, 30: 833–839
[24] Ahmadi A, Baker D A. Effects of abscisic acid (ABA) on grain filling processes in wheat. Plant Growth Regul, 1999, 28: 187–197
[25] Wang C-Y(王晨阳), Ma D-Y(马冬云), Guo T-C(郭天财), Zhu Y-J(朱云集), Wang H-C(王化岑), Feng W(冯伟). Effects of dif-ferent irrigation and nitrogen application regimes on starch com-ponents and paste properties of winter wheat (Triticum aestivum L.). Acta Agron Sin (作物学报), 2004, 30(8): 739–744 (in Chi-nese with English abstract)
[26] Keeling P L. Wood J R, Tyson R H, Bridges I G. Starch biosyn-thesis in developing wheat grain. Plant Physiol, 1988, 87: 311–319
[27] Nakamura T, Yamaori M, Hirano H, Hidaka S. Decrease of waxy (Wx) protein in two common wheat cultivars with low amylose content. Plant Breed, 1993, 111: 99–105
[28] Zhao J-Y(赵俊晔), Yu Z-W(于振文), Sun H-M(孙慧敏), Ma X-H(马兴华), Sun Q(孙强). Differences in starch components and related enzymes activity in the grains of different wheat cul-tivars. Acta Agron Sin (作物学报), 2004, 30(6): 525–530 (in Chinese with English abstract)
[29] Xie Z J, Jiang D, Cao W X, Dai T B, Jing Q. Effects of post-anthesis soil water status on the activities of key regulatory enzymes of starch and protein accumulation in wheat grains. J Plant Physiol Mol Biol, 2003, 29: 309–316
[30] Xue Q, Zhu Z, Musick J T, Stewart B A, Dusek D A. Root growth and water uptake in winter wheat under deficit irrigation. Plant Soil, 2003, 257: 151–161
[31] Li J-M(李建民), Wang P(王璞), Zhou D-X(周殿玺), Lan L-W(兰林旺). Effects of irrigation system on the water con-sumption and the yield of winter wheat. Eco-agric Res (生态农业研究), 1999, 7(4): 23–26 (in Chinese with English abstract)
[32] Zhang Z-X(张忠学), Yu G-R(于贵瑞). Effects of irrigation scheduling on development and water use efficiency in winter wheat. J Irrig Drain (灌溉排水学报), 2003, 22(2): 1–4 (in Chi-nese with English abstract)
[33] Ma Y-X(马元喜), Wang C-Y(王晨阳), He D-X(贺德先), Liu D-Y(刘殿英). Roots of Wheat (小麦的根). Beijing: China Agri-culture Press, 1999. p 117 (in Chinese)
[34] Liu G-S(刘庚山), Guo A-H(郭安红), Ren S-X(任三学), An S-Q(安顺清), Lin R-N(林日暖), Zhao H-R(赵花荣). The effect of limited water supply on root growth and soil water use of win-ter wheat. Acta Ecol Sin (生态学报), 2003, 23(11): 2342–2352 (in Chinese with English abstract)
[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[3] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[4] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[5] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[6] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[7] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[8] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[9] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[10] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[11] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[12] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[13] 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47.
[14] 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62.
[15] 罗江陶, 郑建敏, 蒲宗君, 范超兰, 刘登才, 郝明. 四倍体小麦与六倍体小麦杂种的染色体遗传特性[J]. 作物学报, 2021, 47(8): 1427-1436.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!