欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (2): 317-323.doi: 10.3724/SP.J.1006.2009.00317

• 耕作栽培·生理生化 • 上一篇    下一篇

不同粒型稻米碾磨特性及蛋白质分布的比较

周丽慧;刘巧泉;顾铭洪*   

  1. 扬州大学农学院/教育部植物功能基因组学重点实验室/江苏省作物遗传生理重点实验室,江苏扬州225009
  • 收稿日期:2008-08-01 修回日期:2008-10-05 出版日期:2009-02-12 网络出版日期:2008-12-11
  • 通讯作者: 顾铭洪
  • 基金资助:

    本研究由国家自然科学基金重点项目(30530470,30828021),国家高技术研究发展计划(863计划)项目(2006AA10A102),江苏省自然科学基金项目(BK2007510),高校自然科学研究项目(06KJA21018)资助.

Milling Characteristics and Distribution of Seed Storage Proteins in Rice with Various Grain shapes

ZHOU Li-Hui,LIU Qiao-Quan,GU Ming-Hong*   

  1. Key Laboratory of Plant Functional Genomics of Ministry of Education/Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Agricultural College, Yangzhou University, Yangzhou 225009,China
  • Received:2008-08-01 Revised:2008-10-05 Published:2009-02-12 Published online:2008-12-11
  • Contact: GU Ming-Hong

摘要:

3个具不同品质和粒形特点的典型水稻品种,比较研究了稻米碾磨特性及蛋白质含量与组分在籽粒内部的分布情况。碾磨程度和达到相应碾磨程度所需碾磨时间之间的非线性关系显示糠层由外到内硬度不断增加;淀粉胚乳层硬度保持不变,且高于糠层硬度。不同品种达到相同碾磨程度所需时间差异较大,说明淀粉等物质的沉积密度在品种中存在较大差异。蛋白质含量在籽粒不同部位不是均匀分布的,3个品种糙米中均约85%的蛋白质分布在胚乳层中,清芦占11的蛋白质含量以外层胚乳最高,苏御糯和扬辐粳4901蛋白质含量均以糠层最高。随碾磨程度的提高,籽粒蛋白质含量由表及里呈降低趋势,核心层胚乳只有糠层的1/2左右,但不同类型水稻品种的降低趋势不同。SDS-PAGE分析表明,不同种子贮藏蛋白组分在籽粒内部的分布是相对均匀的,说明不同蛋白质组分在积累过程中,其遗传表达相对同步。

关键词: 水稻, 碾磨特性, 种子贮藏蛋白, 稻米品质

Abstract:

Rice (Oryza sativa L.), one of the most important crops, is a very good and relatively cheap source of energy and protein. The processing quality and nutrition distribution are different among rice varieties. The objective of the present study was to explore the distribution of proteins in rice kernel and to provide some references on the processing of high-quality rice using three rice cultivars with different quality and grain shapes, including two japonica cultivars Suyunuo and Yangfujing 4901, and one indica rice Qiangluzhan11. The degree of milling (DOM, 0–25%) and milling time were carefully measured, respectively. The results showed that the hardness was increased from outer to inner bran layers, and unchanged in endosperm fractions, which was higher than that of bran layers. This non-linear relationship between milling time and DOM implied variability in hardness within different rice fractions. Furthermore, the analysis of relationship between protein content and DOM indicated that the protein was not equably distributed within the brown rice kernel. The endosperm (DOM > 9%) was identified to contain most of the rice kernel proteins (about 85% of total seed proteins) in all the three cultivars. But the protein content in the brown rice kernel decreased from outer to inner fractions, and that in core endosperm fractions was only about half of that in bran layers. In addition, SDS-PAGE analysis for total proteins in the grains with various DOM showed that the distribution of seed protein components was relatively uniform, suggesting the synchro genetic expression of seed protein components in rice grain.

Key words: Rice(Oryza sativa L.), Milling characteristics, Seed storage proteins, Grain quality

[1] Juliano B O. Rice: Chemistry and Technology. St. Paul, Minn (USA): American Association of Cereal Chemists Inc., 1985. pp 1–174
[2] Liu Q-Q(刘巧泉), Zhou L-H(周丽慧), Wang H-M(王红梅), Gu M-H(顾铭洪). Advances on biosynthesis of rice seed storage proteins in molecular biology. Mol Plant Breed (分子植物育种), 2008, 6(1): 1–15 (in Chinese with English abstract)
[3] Wang H-M(王红梅), Liu Q-Q(刘巧泉), Gu M-H(顾铭洪). The nutritional quality of rice proteins and its genetic improvement. Plant Physiol Commun (植物生理学通讯), 2007, 43(2): 391–396 (in Chinese)
[4] Itani T, Tamaki M, Arai E, Horino T. Distribution of amylase, ni-trogen, and minerals in rice kernels with various characters. J Agric Food Chem, 2002, 50: 5326–5332
[5] Kennedy B M, Schelstrate M, Del Rosario A R. Chemical, physical, and nutritional properties of high-protein flours and re-sidual kernel from the overmilling of uncoated milled rice: 1. Milling procedure and protein, fat, ash, amylase, and starch con-tent. Cereal Chem, 1974, 51: 435–448
[6] Resurreccion A P, Juliano B O, Tanaka Y. Nutrient content and distribution in milling fractions of rice grain. J Sci Food Agric, 1979, 30: 475–481
[7] Bradbury J H, Collins J G, Pyliotis N A. Methods of separation of the major histological components of rice and characterization of their proteins by amino acid analysis. Cereal Chem, 1980, 57: 133–137
[8] Cagampang G B, Crruz L J. Studies on the extraction and com-position of rice proteins. Cereal Chem, 1966, 43: 145–155
[9] Furukawa S, Mizuma T, Kiyokawa Y, Masumura T, Tanaka K, Wakai Y. Distribution of storage proteins in low-glutelin rice seed determined using a fluorescent Antibody. J Biosci Bioeng, 2003, 96: 467–473
[10] Wang Y, Wang L, Shepard D, Wang F, Patindol J. Properties and structures of flours and starches from whole, broken and yel-lowed rice kernels in a model study. Cereal Chem, 2002, 79: 383–386
[11] Chen H, Siebenmorgen T J. Effect of rice kernels thickness on degree of milling and associated optical measurements. Cereal Chem, 1997, 74: 821–825
[12] Brenda G L, Elaine T, Champagne C, Bryan T V, William R W, Franklin E B II, Bill D W, Anna M M, Karen A M, Steve L, Kent S M, David E K. Effect of degree of milling, drying condition and final moisture content on sensory texture of cooked rice. Cereal Chem, 1999, 76: 56–62
[13] Stermer R A. An instrument for objective measurements of de-gree of milling and color of milled rice. Cereal Chem, 1968, 45: 358–364
[14] Wadsworth J I. Rice: Science and Technology. New York: Marcel Dekker, Inc. 1994. pp 139–176
[15] Association of Official Analytical Chemists (AOAC). Association of Official Analytical Chemists Official Methods of Analysis, 16th edn. Method 990.03, Washington, DC: The Association, 1995. pp 35–43
[16] Yamagata H, Sugimoto T, Tanaka K, Kasai Z. Biosynthesis of storage proteins in developing rice seeds. Plant Physiol, 1982, 70: 1094–1100
[17] Sambrook J, Fritsch E F, Maniatis T. Molecular Cloning: A Labo-ratory Manual. Cold Spring Harbor, US, NY: Cold Spring Harbor Laboratory Press, 1989
[18] Indudhara S Y M, Sowbhagya C M, Bhattacharya K R. Changes in the physicochemical properties of rice with aging. J Sci Food Agric, 1978, 29: 627–631
[19] Villareal R M, Resurreccion A P, Suzuki L B, Juliano B O. Changes in the physicochemical properties of rice during storage. Starke, 1976, 28: 88–92
[20] Nagato K. On the hardness of rice endosperm. Proc Crop Sci Jpn, 1962, 31: 102–105 (in Japanese with English abstract)
[21] Rout G, Senapati B, Ahmed T. Studies in relative susceptibility of some high-yield varieties of rice to the weevil, Sitophilus orazae L. Bull Grain Technol, 1976, 14: 34
[22] Goodman D E, Rao R M. Experimentally validated predictive models for puffability of gelatinized rice. La. Agric. Exp. Stn. Bull. 753. La. State Univ. Agric. Ctr. Baton Rouge, LA. 1983. pp 58–79
[23] Webb B D, Pomeranz Y, Afework S, Lai F S, Bollich C N. Rice grain hardness and its relationship to some milling, cooking, and processing characteristics. Cereal Chem, 1986, 63: 27–30
[24] Lieve L, Els D B, Greet E V, Vandeputte W S, Veraverbeke V D, Walter De M, Delcour J A. Effect of milling on colour and nutri-tional properties of rice. Food Chem, 2007, 100: 1496–1503
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[13] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[14] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[15] 王琰, 陈志雄, 姜大刚, 张灿奎, 查满荣. 增强叶片氮素输出对水稻分蘖和碳代谢的影响[J]. 作物学报, 2022, 48(3): 739-746.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!