欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (3): 412-417.doi: 10.3724/SP.J.1006.2009.00412

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

适用于棉花荧光原位杂交的DNA纤维高效制备技术

彭仁海12;宋国立1;刘方1;黎绍惠1;王春英1;张香娣1;王玉红1;王坤波1*   

  1. 1中国农业科学院棉花研究所/农业部棉花遗传改良重点实验室,河南安阳455000;2安阳工学院生物与食品工程学院,河南安阳455000
  • 收稿日期:2008-10-13 修回日期:2009-01-06 出版日期:2009-03-12 网络出版日期:2009-01-15
  • 通讯作者: 王坤波
  • 基金资助:

    本研究由国家自然科学基金(30170501),国家高技术研究发展计划(863计划)(2003AA207051),国家转基因生物新品种培育重大专项(2008ZX08005-003)资助

An Efficient Method of Cotton DNA Fibers Preparation for FISH

PENG Ren-Hai12;SONG Guo-Li1;LIU Fang1;LI Shao-Hui1;WANG Chun-Ying1;ZHANG Xiang-Di1;WANG Yu-Hon1g;WANG Kun-Bo1*   

  1. 1Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture/Cotton Research Institute, Chinese Academy of Agricultural Sciences,Anyang 455000,China;2College of Biology and Food Technology, Anyang Institute of Technology, Anyang 455000,China
  • Received:2008-10-13 Revised:2009-01-06 Published:2009-03-12 Published online:2009-01-15
  • Contact: WANG Kun-Bo

摘要:

棉花富含酚类和多糖等高分子次生化合物,细胞质浓厚,且染色体形态小、数目多、制片困难,至今还未见棉花DNA纤维制备方面的报道。本研究用“刀切引流法”,在含有Triton X-100PVP40的冰冷细胞核提取缓冲液中,用锋利的刀片切割发育一周的棉花黄化子叶以释放棉花细胞核,所得细胞核干净完整杂质少,不需要研磨和巯基乙醇等处理,方便快捷无毒害,成功率达到100%。细胞核在室温下经温和碱裂解去除染色质上的蛋白质后,以前端导引裂解液铺展载玻片,即“引流法”拉伸制备DNA纤维,避免了液体表面张力的影响,消除了因载玻片推抹用力不均而导致的DNA纤维堆积和断裂,所制备的DNA纤维平直完整、伸展程度均匀、背景清晰。用基因组和45S rDNA 分别标记探针进行杂交,结果表明所制备的棉花DNA纤维适用于荧光原位杂交。本研究探索出一套简单、高效、快捷、无毒害的适宜于棉花荧光原位杂交的DNA纤维制备技术,必将为棉花基因组研究和全基因组序列的最终完成提供强有力的技术支持。

关键词: 棉花, 荧光原位杂交, DNA纤维, 高效制备

Abstract:

Fluorescence in situ hybridization (FISH) has become the most important technique applied in molecular cytogenetics, especially in developing physical maps in plants. As a key technique, FISH on cotton DNA fibers stretched has not been reported yet, possibly owning to the difficulty in their DNA fiber preparation as well as the existence of thick cytoplasm and hard cell walls. Here we present a method of highly efficient preparation of stretched DNA fibers in cotton. Cotton cotyledons germinated in dark moisture chamber for one week were chopped with a sharp sterile scalpel in a Petri dish that contained ice-cold nucleus isolation buffer(MgSO4 10 mmol L-1, KCl 5 mmol L-1, HEPES 0.5 mmol L-1, DTT 1 mg mL-1, Triton X-100 0.25%, PVP40 2%) followed by sequential filtration through 100, 50, and 30 µm nylon meshes. Nuclei were obtained by centrifuging the filtrates at 16 000 g for 1 min. Mixture of nucleus lysis buffer(0.5% SDS, 5 mmol L-1 EDTA, 100 mmol L-1 Tris, pH7.0) and nuclei was incubated on the slide for 9 min, DNA fibers obtained by dragging and stretching with a clean slide edge from the end to another end on the liquid surface. After incubated at 60 overnight, the slides were pretreated with DNase-free RNase and then rinsedin 2×SSC. The probes and DNA fibers were denatured separately, and hybridization mixture was incubated on the slide overnight, followed by post-hybridization rinses in 2×SSC, 1×4T. The slides were blocked with 5% BSA and covered with antibody for 1h. After rinsed with 1×TNT the slides were counterstained with 4', 6-diamidino-2-2phenylin-dole (DAPI) and followed by rinsing in 1×PBS. After mounting the slides with Vectashield mounting medium the hybridization signals were observed under a fluorescence microscope. Images were captured by a charge-coupled device (CCD) system and brought together to make the plate using Adobe Photoshop 7.0 software. The results indicated that it was easier to release nuclei from cells in nucleus isolation buffer by chopping cotyledon, and slowly and smoothly dragging the nuclei solution with a slide edge from the end to another end on slide treated with poly-L-lysine. Highly stretched and intact DNA fibers were obtained. This method is very simple and rapid, which takes only 30 min to finish the entire process, and it is also safe because poisonous mercaptoethanol is replaced by dithiothreitol. The linear or near-linear stretches of beads on-a-string signals with cotton genomic DNA and 45S rDNA as probes showed that the DNA fibers were suitable for FISH.

Key words: Cotton, FISH, DNA fibers, Efficient preparation

[1] Jiang J M, Gill B S. Current status and the future of fluorescence in situ hybridization (FISH) in plant genome research. Genome, 2006, 49: 1057-1068
[2] Heiskanen M, Karhu R, Hellsten E, Peltonen L, Kallioniemi O P, Palotie A. High resolution mapping using fluorescence in situ hybridization to extend DNA fibers prepared from agarose-embedded cells. Biotechniques, 1994, 17: 928-933
[3] Gad S, Aurias A, Puget N, Puget N, Mairal A, Schurra C, Montagna M, Pages S, Caux V, Mazoyer S, Bensimon A, Stoppa-Lvonnet D. Color bar coding the BRCA1 gene on combed DNA: A useful strategy for detecting large gene rearrangements. Genes Chrom Cancer, 2001, 31: 75-84
[4] Heiskanen M, Peltonen L, Palotie A. Visual mapping by high resolution FISH. Trend Genet, 1996, 12: 379-382
[5] Shiel C, Coutelle C, Huxley C. Analysis of ribosomal and alphoid repetitive DNA by fiber- FISH. Cytogenet Cell Genet, 1997, 76: 20-22
[6] Li Z-Y(李宗芸), Huang S-L(黄思罗), Jin W-W(金危危), Ning S-B(宁顺斌), Song Y-C(宋运淳), Li L-J(李立家). Determination of copy number for 5S rDNA and centromeric sequence RCS2 in rice by fiber-FISH. Chin Sci Bull (科学通报), 2002, 47(3): 214-217(in Chinese with English abstract)
[7] Li Z-Y(李宗芸), Qin R(覃瑞), Jin W-W(金危危), Xiong Z-Y(熊志勇), Song Y-C(宋运淳). FISH analys is o f pachytene chromosome and DNA fiber of telomere sequence in rice (Oryzas ativa L. indica). Acta Genet Sin (遗传学报), 2005, 32(8): 832-836(in Chinese with English abstract)
[8] Weier H U, Wang M, Mullikin J C, Zhu Y, Cheng J F. Quantitative DNA fiber mapping. Hum Mol Genet, 1995, 4: 1903-1910
[9] Fransz P F, Alonso-Blanco C, Liharska T B, Peeters A J M, Zabel P, de Jong J H. High resolution physical mapping in Arabidopsis thaliana and tomato by fluorescence in situ hybridization to extended DNA fibers. Plant J, 1996, 9: 421-430
[10] Fransz P F, Armstrong S, de Jong J H, Parnell L D, van Drunen G, Dean C, Zabel P, Bisseling T, Jones G H. Integrated cytogenetic map of chromosome arm 4S of A. thaliana: Structural organization of heterochromatic knob and centromere region. Cell, 2000, 100: 367-376
[11] Ohmido N, Kijima K, Akiyama Y, de Jong J H, Fukui K. Quantification of total genomic DNA and selected repetitive sequences reveals concurrent changes in different DNA families in indica and japonica rice. Mol Gen Genet, 2000, 263: 388-394
[12] Jackson S A, Cheng Z K, Wang M L, Goodman H M, Jiang J. Comparative fluorescence in situ hybridization mapping of a 431-kb Arabidopsis thaliana bacterial chromosomal duplications in expansion of the Brassica rapa genome. Genetics, 2000, 156: 833-838
[13] Zhong X B, Fransz P F, Wennekes E J, Zabel P, Van Kammen A, de Jong J H. High-resolution mapping on pachytene chromosomes and extended DNA fibres by fluorescence in situ hybridization. Plant Mol Biol Rep, 1996, 14: 232-242
[14] Chen Z J, Scheffler B E, Dennis E, Triplett B A, Guo W Z, Zhang T Z, Chen X Y, Stelly D M, Rabinowicz P D, Town C D, Arioli T, Brubaker C, Cantrell R G, Lacape J M, Ulloa M, Chee P, Gingle A R, Haigler C H, Perc R, Saha S, Wilkins T, Wright R J, Deynze A V, Zhu Y X, Yu S X, Abdurakhmonov I, Katageri I, Kumar P A, Mehboob-ur-Rahman, Zafar Y, Kohel R J, Yu J Z, Wendel J F, Paterson A H. Toward sequencing cotton (Gossypium) genomes. Plant Physiol, 2007, 145: 1304-1310
[15] Paterson Andrew H. Sequencing the cotton genomes-Gossypium spp. Cotton Sci, 2008, 20(suppl): 3
[16] Wilkins Thea A. Sequencing of a cultivated diploid cotton genome-Gossypium arboreum. 2008, Cotton Sci, 20(suppl): 5
[17] Cheng Z, Presting G G, Buell C R, Wing R A, Jiang J. High-resolution pachytene chromosome mapping of bacterial chromosomes anchored by genetic markers reveals the centromere location and the distribution of genetic recombination along chromosome 10 of rice. Genetics, 2001, 157: 1749-1757
[18] Xiong Z-Y(熊志勇), Gao Y(高原), He G-Y(何光源), Gu M-G(谷明光), Guo L-Q(郭乐群), Song Y-C(宋运淳). Distribution of the knob heterochromatin repeat sequence on chromosome in maize, perennial diploid maize and their offspring. Chin Sci Bull (科学通报), 2004, 12(49): 1162-1165(in Chinese with English abstract)
[19] Li D-Y(李大勇), Zhang X-Y(张学勇), Yang J(杨继), Rao G-Y(饶广远). Genetic relationship and genomic in situ hybridization analysis of the three genomes in Triticum aestivum. Acta Bot Sin (植物学报), 2000, 42(9): 957-964(in Chinese with English abstract)
[20] Jin W-W(金危危), Qin R(覃瑞), Yu S-W(余舜武), Song Y-C(宋运淳). A new method to improve detection rate of FISH in rice-RFLP mix-labeled. Hereditas (遗传), 2001, 23(3): 263-265(in Chinese with English abstract)
[21] Han Y-H(韩永华), Song Y-C(宋运淳), Jin W-W(金危危). Research progress of repetitive sequence in maize genome. J Maize Sci (玉米科学), 2007, 15(4): 37-40(in Chinese with English abstract)
[22] Liu B-S(刘保申) , Li D-Y(李大勇), Zhang X-Y(张学勇), Gao Q-R(高庆荣), Sun L-Z(孙兰珍) , Sun Q-X(孙其信), Dong S-T(董树亭). Primary identification of alien chromatin in T911289, a maintainer of wheat male sterile line with cytoplasm of Aegilops kotschyi. Acta Bot Sin (植物学报), 2003, 45(6): 724-730(in Chinese with English abstract)
[23] Hanson R E, Islam-Faridi M N, Percival E A, Crane C F, Ji Y F, McKnight T D, Stelly D M, Price H J. Distribution of 5S and 18S-28S rDNA loci in a tetraploid cotton (Gossypium hirsutum L.) and its putative diploid ancestors. Chromosoma, 1996, 105: 55-61
[24] Wang K, Song X L, Han Z G, Guo W Z, Yu J Z, Sun J, Pan J J, Kohel R J, Zhang T Z. Complete assignment of the chromosomes of Gossypium hirsutum L. by translocation and fluorescence in situ hybridization mapping. Theor Appl Genet, 2006, 113:73-80
[25] Wang K, Guo W Z, Zhang T Z. Development of one set of chromosome-specific microsatellite- containing BACs and their physical mapping in Gossypium hirsutum L. Theor Appl Genet, 2007, 115: 675-682
[26] Wang C-Y(王春英), Wang K-B(王坤波), Wang W-K(王文奎), Li M-X(李懋学), Song G-L(宋国立), Cui R-X(崔荣霞), Li S-H(黎绍惠), Zhang X-D(张香娣), Zhang J-M(张家明). Protocol of cotton FISH of somatic chromosomes with gDNA as probes (棉花学报). Cotton Sci, 1999, 11(2): 79-83(in Chinese with English abstract)
[27] Wang C-Y(王春英), Wang K-B(王坤波), Song G-L(宋国立), Li M-X(李懋学), Bie S(别墅), Li S-H(黎绍惠), Zhang X-D(张香娣). Protocol of cotton FISH of somatic chromosomes with rDNA as probes. Acta Gossypii Sin (棉花学报), 2001, 13(2): 75-77 (in Chinese with English abstract)
[28]Wang K-B(王坤波), Wang W-K(王文奎), Wang C-Y(王春英), Song G-L(宋国立), Cui R-X(崔荣霞), Li S-H(黎绍惠), Zhang X-D(张香娣). Studies of FISH and karyotype of Gossypium barbadense. Acta Genet Sin (遗传学报), 2001, 28(1): 69-75(in Chinese with English abstract)
[29] Liu S-H(刘三宏), Wang K-B(王坤波), Song G-L(宋国立), Wang C-Y(王春英), Liu F(刘方), Li S-H(黎绍惠), Zhang X-D(张香娣), Wang Y-H(王玉红). Primary investigation on GISH-NOR in cotton. Chin Sci Bull (科学通报), 2005, 50(5): 425-429(in Chinese with English abstract)
[30] Wang K-B(王坤波), Song G-L(宋国立), Wang C-Y(王春英), Liu S-H(刘三宏), Liu F(刘方), Li M-X(李懋学), Li S-H(黎绍惠), Zhang X-D(张香娣), Wang Y-H(王玉红). FISH-based karyotype of Gossypium herbuceum generated with 45S rDNA and gDNA of Gossypium raimondii as probes. Cotton Sci (棉花学报), 2008, 20(4): 264-273(in Chinese with English abstract)
[31] Ji Y F, Donato M D, Cranel C F, Raska W A, Islam-Faridi M N, McKnight T D, Price H J, Stelly D M. New ribosomal RNA gene locations in Gossypium hirsutum mapped by meiotic FISH. Chromosoma, 1999, 108: 200-207
[32] Crane C F, Price H J, Stelly D M, Czeschin D G. Identification of a homeologous chromosome pair by in situ hybridization to ribosomal RNA loci in meiotic chromosomes of cotton (Gossypium hirsutum L.). Genome, 1993, 36: 1015-1022
[33] Li L J, Yang J L, Tong Q, Zhao L J, Song Y C. A novel approach to prepare extended DNA fibers in plants. Cytometry Part A, 2005, 63A: 114-117
[34] Wang X-F(王省芬), Ma J(马骏), Ma Z-Y(马峙英), Zhang G-Y(张桂寅), Zheng Y-M(郑拥民). BAC library construction and characterization of Suyuan7235, a cotton germplasm with high fiber strength. Cotton Sci (棉花学报), 2006, 18(4): 200-203(in Chinese with English abstract)
[35] Rijke F M, Florijn R J, Tanke H J, Raap A K. DNA fiber-FISH staining mechanism. J Histochem Cytochem, 2000, 48: 743-745
[1] 周静远, 孔祥强, 张艳军, 李雪源, 张冬梅, 董合忠. 基于种子萌发出苗过程中弯钩建成和下胚轴生长的棉花出苗壮苗机制与技术[J]. 作物学报, 2022, 48(5): 1051-1058.
[2] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[3] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[4] 郑曙峰, 刘小玲, 王维, 徐道青, 阚画春, 陈敏, 李淑英. 论两熟制棉花绿色化轻简化机械化栽培[J]. 作物学报, 2022, 48(3): 541-552.
[5] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[6] 张特, 王蜜蜂, 赵强. 滴施缩节胺与氮肥对棉花生长发育及产量的影响[J]. 作物学报, 2022, 48(2): 396-409.
[7] 赵文青, 徐文正, 杨锍琰, 刘玉, 周治国, 王友华. 棉花叶片响应高温的差异与夜间淀粉降解密切相关[J]. 作物学报, 2021, 47(9): 1680-1689.
[8] 岳丹丹, 韩贝, Abid Ullah, 张献龙, 杨细燕. 干旱条件下棉花根际真菌多样性分析[J]. 作物学报, 2021, 47(9): 1806-1815.
[9] 曾紫君, 曾钰, 闫磊, 程锦, 姜存仓. 低硼及高硼胁迫对棉花幼苗生长与脯氨酸代谢的影响[J]. 作物学报, 2021, 47(8): 1616-1623.
[10] 马欢欢, 方启迪, 丁元昊, 池华斌, 张献龙, 闵玲. 棉花GhMADS7基因正调控棉花花瓣发育[J]. 作物学报, 2021, 47(5): 814-826.
[11] 许乃银, 赵素琴, 张芳, 付小琼, 杨晓妮, 乔银桃, 孙世贤. 基于GYT双标图对西北内陆棉区国审棉花品种的分类评价[J]. 作物学报, 2021, 47(4): 660-671.
[12] 周冠彤, 雷建峰, 代培红, 刘超, 李月, 刘晓东. 棉花CRISPR/Cas9基因编辑有效sgRNA高效筛选体系的研究[J]. 作物学报, 2021, 47(3): 427-437.
[13] 卢合全, 唐薇, 罗振, 孔祥强, 李振怀, 徐士振, 辛承松. 商品有机肥替代部分化肥对连作棉田土壤养分、棉花生长发育及产量的影响[J]. 作物学报, 2021, 47(12): 2511-2521.
[14] 王晔, 刘钊, 肖爽, 李芳军, 吴霞, 王保民, 田晓莉. 转PSAG12-IPT基因对棉花叶片衰老及产量和纤维品质的影响[J]. 作物学报, 2021, 47(11): 2111-2120.
[15] 杨琴莉, 杨多凤, 丁林云, 赵汀, 张军, 梅欢, 黄楚珺, 高阳, 叶莉, 高梦涛, 严孙艺, 张天真, 胡艳. 棉花花器官突变体的鉴定及候选基因的克隆[J]. 作物学报, 2021, 47(10): 1854-1862.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!