欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (3): 418-423.doi: 10.3724/SP.J.1006.2009.00418

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

大豆抗疫霉根腐病的蛋白组研究

邱红梅13;刘春燕12**;张代军3;辛秀君3;王家麟1;王晶1;单彩云1;单大鹏1;胡国华2*;陈庆山1*   

  1. 1东北农业大学大豆研究所,黑龙江哈尔滨150030;2黑龙江省农垦科研育种中心,黑龙江哈尔滨150090;3黑龙江省农垦总局红兴隆科研所,黑龙江友谊155811
  • 收稿日期:2008-06-17 修回日期:2008-10-22 出版日期:2009-03-12 网络出版日期:2009-01-15
  • 通讯作者: 陈庆山
  • 基金资助:

    本研究由引进国际先进农业科学技术计划(948计划)项目[2006G1(A)],国家高技术研究发展计划(863计划)项目(2006AA10Z1F4)科研启动基金会项目(LHK-04014),黑龙江省博士后资助项目(LRB06-126),黑龙江省"十一五"科技攻关项目(GA06B101-2-6)资助

Proteome Analysis on Resistance to Phytophora Root Rot in Soybean

QIU Hong-Mei13;LIU Chun-Yan12**;ZHANG Dai-Jun3;XIN Xiu-Jun3;WANG Jia-Lin1;WANG Jing1;SHAN Da-Peng1;HU Gu-Hua2*;CHEN Qing-Shan1*   

  1. 1Soybean Research Institute, Northeast Agricultural University, Harbin 150030,China;2Land Reclamation Research & Breeding Centre of  Heilongjiang,Harbin 150090,China;3Hongxinglong Research Institute of Heilongjiang Land Reclamation Bureau,Youyi 155811,China
  • Received:2008-06-17 Revised:2008-10-22 Published:2009-03-12 Published online:2009-01-15
  • Contact: CHEN Qing-Shan

摘要:

利用双向电泳及MALDI-TOF-MS技术分析绥农10号真叶接种疫霉菌1号生理小种后的蛋白质组变化。在抗病品种绥农10号叶片中共获得19个差异表达蛋白点, 其中有12个上调表达, 6个下调表达, 1个特异表达(仅在接种后出现)。利用生物质谱分析8个上调表达点、1个下调表达点和1个特异表达点, 最终鉴定得到8个有注释功能的蛋白, 根据功能可分为4, 1类为参与新陈代谢的蛋白, 包括二磷酸核酮糖羧化酶的大亚基及前体、琥珀酰-辅酶A;第2类为参与信号传导的蛋白, 包括激酶受体类蛋白、氧化还原酶和半胱氨酸氧化还原酶;第3类为参与细胞内物质运输的蛋白, 包括衣壳蛋白的zeta-3亚基;第4类为转录因子, 是参与茉莉酸介导的F-box蛋白。这些蛋白可为进一步研究大豆抗病机制奠定基础。

关键词: 大豆, 疫霉根腐病, 抗病相关蛋白, 2D, MALDI-TOF-MS

Abstract:

Phytophthora root rot caused by Phytophthora sojae is a serious soil-borne fungi disease endangeringsoybean production and bringing huge economic losses. The objective of this study was to survey and identify the proteins associated with resistance, using soybean cultivar Suinong 10 by two-dimensional gel electrophoresis and mass spectrometry technology.Nineteen differentially expressed proteins were obtained, of twelve which presented up-regulated, six were down-regulated, and one was special protein. Ten protein spots including eight with up-regulated expression, one with down-regulated expression, and one with specially expression were investigated by biological mass spectrometry. The results showed that eight functional proteins were identified, three of which involved inmetabolism, consisting of the ribolose-1,5-phosphate carboxylase large subunit and its precursor, succinyl coenzyme A, three of which were related to signal transduction, encompassing kinase receptor like protein, oxidoreductase, and cysteamine ammonia acid oxidoreductase, one of which participated in transport of metabolites in cells, i.e. clothing zeta-3 protein subunits, one of which was concerned with the jasmonic acid-mediated resistance, including F-box protein. The results provide useful information for studying the molecular mechanism of resistance to Phytophthora root rot.

Key words: Soybean, Phytophoya root rot , Resistance-related protein, 2D, MALDI-TOF-MS

[1]Burnham K D, Dorrance A E, Francis D M, Fioritto R J, Martin S K St. Rps8 a new locus in soybean for resistance to Phytophthora sojae. Crop Sci, 2003, 43: 101–105
[2]Sandhu D, Gao H Y, Cianzio S, Bhattacharyya M K. Deletion of a disease resistance nucleotide-binding-site leucine-rich-repeat-like sequence is associated with the loss of the phytophthora resistance gene Rps4 in soybean. Genetics, 2004, 168: 2157–2167
[3]Zhu Z-D(朱振东), Huo Y-L(霍云龙), Wang X-M(王晓鸣), Huang J-B(黄俊斌), Wu X-F(武小菲). Molecular identification of a novel phytophthora resistance gene in soybean. Acta Agron Sin (作物学报), 2007, 33(1): 154–157(in Chinese with English abstract)
[4]Gao H Y, Narayanan N N, Ellison L, Bhattacharyya M K. Two classes of highly similar coiled coil-nucleotide-binding leucine-rich-repeat genes isolated from the Rps1-K locus encode phytophthora resistance in soybean. Mol Plant Microbe Interact, 2005, 10: 1035–1045
[5]Whisson S C, Drent h A, Maclean D J, Irwin J A. Phytophthora sojae avirulence genes, RAPD, and RFLP markers used to construct a detailed genetic linkage map. Mol Plant Microbe Interact, 1995, 8: 988–995
[6]Shan W, Cao M, Leung D, Tyler B M. The Avr1b locus of Phytophthora sojae encodes an elicitor and a regulator required for avirulence on soybean plants carrying resistance gene Rps1b. Mol Plant-Microbe Interact, 2004, 17: 394–403
[7]Ward E W B, Cahill D M, Bhattacharyya M K. Early cytological differences between compatible and incompatible interactions of soybeans with Phytophthora megasperma f. sp. glycinea. Physiol Mol Plant Pathol, 1989, 4: 267–283
[8]Graham M Y, Weidner J, Wheeler K, Pelowm J, Graham T L. Induced expression of pathogenesis-related protein genes in soybean by wounding and the Phytophthora sojae cell wall glucan elicitor. Physiol Mol Plant Pathol, 2003, 63: 141–149
[9]Morris P F. Identification and accumulation of isoflavonoids and isoflavone glucosides in soybean leaves and hypocotyls in resistance responses to Phytophthora megasperma f. sp. glycinea. Physiolog Mol Plant Pathol, 1991, 39: 229–244
[10]Sun G-Z(孙果忠). Molecular mechanism of non-host resistance to Phytophthora sojae. PhD Dissertation of Chinese Academy of Agricultural Science, 2007(in Chinese with English abstract)
[11]Kim H S, Delaney T P. Arabidopsis SON1 is an F-box protein that regulates a novel induced defense response independent of both salicylic acid and systemic acquired resistance. Plant Cell, 2002, 14: 1469–1482
[12]Kenjiro S, Toshihiko H, Toru K, Takashi I, Tomoyuki Y. Interaction of N-acetylglutamate kinase with a PII-like protein in rice. Plant Cell Physiol, 2004, 45: 1768–1778
[13]David J S, Nathalie L M, Alessandra P, Rainer P, Jean-Pierre P. COPI-coated ER-to-golgi transport complexes segregate from COPII in close proximity to ER exit sites. J Cell Sci, 2000, 113: 2177–2185
[14]Portis A R. Rubisco activase-Rubisco’s catalytic chaperone. Photosynth Res, 2003, 75: 11–27
[15]Kamoun S, Huitema E, Vleeshouwers V G A A. Resistance to oomycetes: A general role for the hypersensitive response? Trends Plant Sci, 1999, 4: 196–200
[16]Takeuchi Y. Immunological evidence that beta-1,3-endoglucanase is the major elicitor-releasing factor in soybean. Annu Phytopathol Soc Jpn, 1990, 56: 523–531
[17]Graham M Y, Weidner J, Wheeler K, Pelow M J, Graham T L. Induced expression of pathogenesis-related protein genes in soybean by wounding and the phytophthora sojae cell wall glucan elicitor. Physiol Mol Plant Pathol, 2003, 63: 141–149
[18]Moy P, Qutob D, Chapman B P, Atkinson L, Gijzen M. Patterns of gene expression upon infection of soybean plants by Phytophthora sojae. Mol Plant Microbe Interact, 2004, 17: 1051–1062
[19]Belkhadir Y, Nimchuk Z, Hubert D A, Mackey D, Dangl J L. Arabidopsis RIN4 negatively regulates disease resistance mediated by RPS2 and RPM1 downstream or independent of the NDR1 signal modulator and is not required for the virulence functions of bacterial type III effectors AvrRpt2 or AvrRpm1. Plant Cell, 2004, 16: 2822–2835
[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[3] 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557.
[4] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[5] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[6] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209.
[7] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[8] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[9] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[10] 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596.
[11] 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643.
[12] 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366.
[13] 张国伟, 李凯, 李思嘉, 王晓婧, 杨长琴, 刘瑞显. 减库对大豆叶片碳代谢的影响[J]. 作物学报, 2022, 48(2): 529-537.
[14] 宋丽君, 聂晓玉, 何磊磊, 蒯婕, 杨华, 郭安国, 黄俊生, 傅廷栋, 汪波, 周广生. 饲用大豆品种耐荫性鉴定指标筛选及综合评价[J]. 作物学报, 2021, 47(9): 1741-1752.
[15] 曹亮, 杜昕, 于高波, 金喜军, 张明聪, 任春元, 王孟雪, 张玉先. 外源褪黑素对干旱胁迫下绥农26大豆鼓粒期叶片碳氮代谢调控的途径分析[J]. 作物学报, 2021, 47(9): 1779-1790.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!