作物学报 ›› 2009, Vol. 35 ›› Issue (4): 672-678.doi: 10.3724/SP.J.1006.2009.00672
吴丹1,高翔12*,于旭1,董剑12,赵万春12,陈其皎12,庞红喜12,李哲清12
WU Dan1,GAO Xiang12*,YU Xu1,DONG Jian12,ZHAO Wan-Chun12,CHEN Qi-Jiao12,PANG Hong-Xi12,LI Zhe-Qing12
摘要:
利用LMW-GS特异引物, 从强筋小麦品种“陕253”中克隆了1个1 498 bp的片段(GenBank登录号为FJ172533),该片段包含全长为912 bp的低分子量谷蛋白亚基的完整编码序列。经比较推导氨基酸序列的同源性,发现该基因属于Glu-D3位点编码低分子量谷蛋白亚基的基因,编码产物N-端具有LMW-m型低分子量谷蛋白亚基的典型特征,系统演化分析也支持这一结果。构建了该基因的表达载体pET32a-GluD3-S253,在宿主菌E. coli Rosetta-gami B (DE3)中经IPTG诱导表达融合蛋白。SDS-PAGE和Western blot检测表达产物,证实融合蛋白表达成功。
[1]Singh N K, Shepherd K W. Linkage mapping of genes controlling endosperm storage proteins in wheat: 1. Genes on the short arms of group 1 chromosomes. Theor Appl Genet, 1988, 75: 628–641 [2]Gupta R B, Shepherd K W. Two-step one-dimensional SDS-PAGE analysis of LMW subunits of glutenin: 1. Variation and genetic control of the subunits in hexaploid wheats. Theor Appl Genet, 1990, 80: 65–74 [3]Gupta R B, MacRitchie F. Allelic variation at glutenin subunit and gliadin loci, Glu-1, Glu-3 and Gli-1 of common wheats: II. Biochemical basis of the allelic effects on dough properties. J Cereal Sci, 1994, 19: 19–29 [4]Flaete N E S, Uhlen A K. Association between allelic variation at the combined Gli-1, Glu-3 Loci and protein quality in common wheat (Triticum aestivum L.). J Cereal Sci, 2003, 37: 129–137 [5]Cherdouh A, Khelifi D, Carrillo J M, Nieto-Taladriz M T. The high and low molecular weight glutenin subunit polymorphism of Algerian durum wheat landraces and old cultivars. Plant Breed, 2008, 124: 338–342 [6]Sreeramulu G, Singh N K. Genetic and biochemical characterization of novel low molecular weight glutenin subunits in wheat (Triticum aestivum L.). Genome, 1997, 40: 41–48 [7]Cassidy B G, Dvorak J, Anderson O D. The wheat low-molecular-weight glutenin gene: characterization of six new gene and process in understanding gene family structure. Theor Appl Genet, 1998, 96: 743–750 [8]Wei Y-Y(魏燕燕), Zhao H-X(赵惠贤), Li Y-C(李勇超), Wang Y-P(王银萍), Guo A-G(郭蔼光). Cloning and sequencing of LMW-GS gene at Glu-B3 in wheat. Acta Bot Boreali-Occident Sin (西北植物学报), 2006, 26(9): 1864–1869 (in Chinese with English abstract) [9]D’Ovidio R. The low-molecular-weight glutenin subunits of wheat gluten. J Cereal Sci, 2004, 39: 321–339 [10]Liu L(刘丽), He Z-H(何中虎), Yu Y-X(于亚雄), Yang J-H(杨金华), Cheng G(程耿), Hu Y-X(胡银星). Research progress in wheat glutenin. Southwest China J Agric Sci (西南农业学报), 2004, 37(1): 8–14 (in Chinese with English abstract) [11]Feilet P, Autoran J. The low molecular glutenin proteins in the determina tion of cooking guality. Cereal Chem, 1989, 66: 26–30 [12]Yang W-Q(杨文强). Low molecular weight glutenin subunits (LMW-GS) and their relationship with quality of wheat. J Northeast Agric Univ (东北农业大学学报), 2003, 34(4): 482–485 (in Chinese with English abstract) [13]Lei D-F(雷东锋), Ma J-G(马建岗), Zhao W-M(赵文明). The progress of study on wheat seed storage proteins. Acta Bot Boreali-Occident Sin (西北植物学报), 2001, 21(3): 584–593 (in Chinese with English abstract) [14]D’Ovidio R, Masci S. The low-molecular-weight glutenin subunits of wheat gluten. J Cereal Sci, 2004, 39: 321–339 [15]D’Ovidio R, Tanzarella O A, Porceddu E. Nucleotide sequence of a low-molecular-weight glutenin from Triticum durum. Plant Mol Biol, 1992, 18: 781–784 [16]Lee Y K, Bekes F, Ciaffi M. The low-molecular-weight glutenin subunit protenins of primitive wheats: Ⅳ. Functional properties of products from individual genes. Theor Appl Genet, 1999, 98: 149–155 [17]Cloutier S, Rampitsch C, Penner G A, Lukow O M. Cloning and expression of a LMW-i glutenin gene. J Cereal Sci, 2001, 33: 143–154 [18]Xu Z-F(徐兆飞), Zhang H-Y(张惠叶), Zhang D-Y(张定一). Wheat quality and its improvement. Beijing: China Meteorological Press, 2000. pp 47–51 (in Chinese) [19]Murray H G, Thompson W F. Rapid isolation of high molecular weight DNA. Nucl Acids Res, 1980, 8: 4321–4325 [20]An X, Zhang Q, Yan Y, Li Q, Zhang Y, Wang A, Pei Y, Tian J, Wang H, Hsam S L K, Zeller F J. Cloning and molecular characterization of three novel LMW-i glutenin subunit genes from cultivated einkorn (Triticum monococcum L.). Theor Appl Genet, 2006, 113: 383–395 [21]Bietz J A, Wall J S. Isolation and characterization of gliadinlike subunits from glutenins. Cereal Chem, 1973, 50: 537–547 [22]Cassidy B G, Dvorak J, Anderson O D. The wheat low-molecular weight glutenin genes: Characterization of six new genes and progress in understanding gene family structure. Theor Appl Genet, 1998, 96: 743–750 [23]Gupta R B, Shepherd K W. Two-step one-dimensional SDS-PAGE analysis of LMW subunits of glutelin. Theor Appl Genet, 1990, 80: 65–74 [24]Jackson E A, Holt L M, Payne P L. Characterization of high-molecular-weight gliadins low-molecular-weight glutenin subunit of wheat endosperm by two-dimensional electrophoresis and the chromosomal localization of their controlling gene. Theor Appl Genet, 1983, 66: 29–37 [25]Lew E J L, Kuzmicky D D, Kasarda D D. Characterization of low molecular weight glutenin subunits by reversed-phase high-performance liquid chromatography, sodium-dodecyl sulfate-polyacrylamide gel electrophoresis, and N-terminal amino acid sequencing. Cereal Chem, 1992, 69: 508–515 [26]Sissons M J, Bekes F, Skerritt J H. Isolation and functionality testing of low molecular weight glutenin subunits. Cereal Chem, 1998, 75: 30–36 [27]Cloutier S, Rampitsch C, Penner G A, Lukow O M. Cloning and expression of a LMW-i glutenin gene. J Cereal Sci, 2001, 33: 143–154 [28]Masci S, D’Ovidio R, Lafiandra D, Kasarda D D. Characterization of a Low-molecular-weight glutenin subunit gene from bread wheat and the corresponding protein that represents a major subunit of the glutenin polymer. Plant Physiol, 1998, 118: 1147–1158 [29]Tabiki T, Ikeguchi S, Ikeda T M. Effects of high-molecular-weight and low-molecular-weight glutenin subunit alleles on common wheat flour quality. Breed Sci, 2006, 56: 131–136 [30]Ikeda T M, Nagamine T, Fukuoka H, Yano H. Characterization of new low-molecular-weight glutenin subunit genes in wheat. Theor Appl Genet, 2002, 104: 680–687 [31]Han B(韩彬), Shepherd K W. The correlations between low glutenin subunits and gliadins and their effects on bread-making quality in the progeny of two wheats. Sci Agric Sin (中国农业科学), 1991, 24(4): 19–25 (in Chinese with English abstract) [32]Gianibelli M C, Larroque O R, Macritchie F, Wrigley C W. Biochemical, genetic, and molecular characterization of wheat glutenin and its component subunits. Cereal Chem, 2001, 78: 635–646 [33]Kolster P, Krechting C F, Van Gelder W M J. Quantification of individual high molecular weight glutenin subunits using SDS-PAGE and scanning densitometry. J Cereal Sci, 1992, 15: 49–61 [34]Zhang P-P(张平平), Zhang Y(张勇), Xia X-C(夏先春), He Z-H(何中虎). Protocol establishment of reversed-phase high-performance liquid chromatography (RP-HPLC) for analyzing wheat gluten protein. Sci Agric Sin (中国农业科学), 2007, 40(5): 1002–1009 (in Chinese with English abstract) [35]Benmoussa M, Vezina L P, Page M, Gelinas P, Yelle S, Laberge S. Potato flour viscosity improvement is associated with the expression of a wheat LMW-glutenin gene. Biotechnol Bioen, 2004, 87: 495–500 [36]Wang X Y, Liu K F, Guo W Z. Cloning and expression of low molecular weight glutenin genes from the Chinese elite wheat cultivar “Xiaoyan 54”. J Integr Plant Biol, 2006, 48: 212–218 [37]Patacchini C, Masci S, D’Ovidio R, Lafiandra D. Heterologous expression and purification of native and mutated LMW-GS from durum wheat. J Chromatogr B, 2003, 786: 215–220 [38]Tamás L, Shewry P R. Heterologous expression and protein engineering of wheat gluten proteins. J Cereal Sci, 2006, 43: 259–274 |
[1] | 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324. |
[2] | 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356. |
[3] | 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272. |
[4] | 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026. |
[5] | 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589. |
[6] | 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715. |
[7] | 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725. |
[8] | 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758. |
[9] | 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462. |
[10] | 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487. |
[11] | 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447. |
[12] | 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164. |
[13] | 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75. |
[14] | 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47. |
[15] | 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62. |
|