作物学报 ›› 2009, Vol. 35 ›› Issue (4): 695-703.doi: 10.3724/SP.J.1006.2009.00695
俞慧娜,刘鹏*,徐根娣,蔡妙珍
YU Hui-Na,LIU Peng*,XU Gen-Di,CAI Miao-Zhen
摘要:
以浙春3号为实验材料, 利用透射电镜(TEM: Transmission Electron Microscope)-X-射线能谱(EDS: Energy Dispersive X-ray), 调查铝胁迫下大豆根尖铝的微区分布及耐铝性。结果表明,Al3+胁迫导致根尖细胞细胞壁不规则加厚, 线粒体数量增多, 核膜膨胀, 液泡中存在较多的电子致密沉淀物。90 mg L-1 Al3+处理的根尖细胞内含物完全降解消失, 仅剩细胞壁。10 mg L-1 Al3+处理的线粒体、细胞壁和液泡电子致密沉淀物中均检测到Al;随着Al3+处理浓度的增大, 各细胞器中Al的质量和原子数百分比逐渐增大。线粒体在60 和90 mg L-1Al3+处理下, 液泡电子致密沉淀物在90 mg L-1Al3+处理下,均未被检测出Al。在60 mg L-1Al3+处理下唯一一次在细胞核中检测到Al。Al3+抑制了根系生长, 根系细胞中细胞壁的Al3+含量受影响最明显。P/Al在细胞壁和线粒体中的相对原子数随Al3+浓度的增大而下降。研究结果表明X–射线能谱对铝在亚显微结构上的定位是一种快速、有效的方法。铝最先积累在细胞壁上, 随Al3+处理浓度增大逐渐积累于部分细胞器和细胞核中, 且含量在细胞中的分布亦由外向里呈递减趁势。
[1] Delhaize E, Ryan P R. Aluminum toxicity and tolerance in plants. Plant Physiol, 1995, 107: 315–321 [2] Juan B, Charlotte P. Fast root growth responses, root exudates, and internal detoxification as clues to the mechanisms of aluminum toxicity and resistance: A review. Environ Exp Bot, 2002, 48: 75–92 [3] Yan H(阎华), Shen X-R(沈秀荣). The mechanism of aluminum toxicity and anti aluminum in plant. J Anhui Agric Sci (安徽农业科学), 2006, 34(20): 5201–5202, 5204(in Chinese with English abstract) [4] Ladislar T, Jana H, Igor M, Marta S, Beata S. Aluminum – induced drought and oxidative stress in barley roots. J Plant Physiol, 2006, 163: 781–784 [5] Li H-S(李海生), Zhang Z-Q(张志权). The absorption and accumulation of aluminum and mineral nutrient in tea (Camellia sinensis) under different Al levels. Ecol Environ (生态环境), 2007, 16(1): 186–190(in Chinese with English abstract) [6] Xiao X-X(肖祥希). Characteristics of Aluminum absorption by Longan (Dimocarpus longan) seedlings. Sci Silv Sin (林业科学), 2005, 41(3): 43–47 (in Chinese with English abstract) [7] Lin Y-M(林玉满). Qualitative and quantitative determination of trace elements in fruits of dictyophora indusiata with SEM an EDAX. Anal Instrum (分析仪器), 1996, (2): 52–54 (in Chinese with English abstract) [8] He L-F(何龙飞), Liu Y-L(刘友良), Shen Z-G(沈振国), Wang A-Q(王爱勤), Li Y-R(李扬瑞). Effect of aluminum on the absorption and distribution of nutrient element of wheat seedling. J Chin Electron Microsc Soc (电子显微学报), 2000, 19(5): 685–694(in Chinese with English abstract) [9] Vázquez M D, Poschenrieder C, Corrales I, Barceló J. Change in apoplastic aluminum during the initial growth response to aluminum by roots of a tolerant maize variety. Plant Physiol, 1999, 119: 435–444 [10] Yu H-N(俞慧娜), Liu P(刘鹏), Xu G-D(徐根娣). Responses of growth and chlorophyll fluorescence characteristics of soybean to aluminum. Chin J Oil Crop Sci (中国油料作物学报), 2007, 29(3): 257–265(in Chinese with English abstract) [11] Li C-S(李朝苏), Liu P(刘鹏), Xu G-D(徐根娣), Zhang X-Y(张晓燕), He W-B(何文彬), Zhou D-Y(周迪莹). Ameliorating effects of exogenous organic acids on aluminum toxicity in buckwheat seedlings. Acta Agron Sin (作物学报), 2006, 32(2): 532–539(in Chinese with English abstract) [12] Yu H-N(俞慧娜), Liu P(刘鹏), Xu G-D(徐根娣), Chen W-R(陈文荣), Zhou J(周菁), Li C-Y(李传勇). Comparative study on root growth and chlorophyll fluorescence characteristics of soybean with aluminum responses. J Shanghai Jiaotong Univ (Agri Sci)(上海交通大学学报·农业科学版), 2007, 25(2): 138–146(in Chinese with English abstract) [13] Pan G-S(潘根生), Masaki T, Shigeki K(小西茂毅). Isolation of cell organelles from the lip-root cells of tea and their distribution of aluminum. Acta Agric Univ Zhejiangensis (浙江农业大学学报), 1991, 17(3): 255–258 (in Chinese with English abstract) [14] Ryan P R, Ditomaso J M, Kochian L V. Aluminum toxicity in roots: An investigation of spatial sensitivity and the role of the root cap. J Exp Bot, 1993, 44: 437–446 [15] Wang J-S(王金胜), Ji M-X(冀满祥), Zhao R-Y(赵如意), Cheng Y-X(程玉香). Protective effect of cerium on mitochondria wheat under salinity stress. J Chin Rare Earth Soc (中国稀土学报). 1999, 17(2): 187–190 (in Chinese with English abstract) [16] Klymchuk D O, Kordyum E L, Vorobyova T V, Chapman D K, Brown C S. Changes in vacuolation in the root apex cells of soybean seedling in microgravity. Adv Space Res, 2003, 31: 2283–2288 [17] Chen Y X, He Y F, Yang Y, Yu Y L, Zheng S J, Tian G M, Luo Y M, Wong M H. Effect of cadmium on nodulation and N2-fixation of soybean in the contaminated soils. Chemosphere, 2003, 50: 781–787 [18] Zaalishvili G, Sadumishvili T, Scalla R, Laurent F, Kvesitadze G. Electron microscopic investigation of nitrobenzene distribution and effect on plant root tip cell ultrastructure. Ecotoxicol Environ Saf, 2002, 52: 190–197 [19] Clarkson D T. Interaction between aluminum and phosphorus on root surfaces and cell wall material. Plant Soil, 1967, 27: 347–356 [20] Ma J F, Yamamoto R, Nevins D J, Matsumoto H, Brown P H. Al binding in the epidermis cell wall inhibits cell elongation of Okra hypocltyl. Plant Cell Physiol, 1999, 40: 549–556 [21] Taylor G J, Mcdonald-Stephens J L, Hunter D B. Direct measurement of aluminum uptake and distribution in single cell of Characorallina. Plant Physiol, 2000, 123: 987–996 [22] Marienfeld S, Stelzer R. X-ray microanalyses in Al – treated Avena sativa plants. J Plant Physiol, 1993, 141: 569–573 [23] Marienfeld S, Lehmannn H, Stelzer R. Ultrastructural investigations and EDX-analyses of Al treated oat (Avena sativa) roots. Plant Soil, 1995, 171: 167–173 [24] Delhaize E, Craig S, Beaton C D, Bennet R J. Jagadish V C, Randall P J. Aluminum tolerance in wheat (Triticum aestivum L.): I. Uptake and distribution of aluminum in root apices. Plant Physiol, 1993, 103: 685–693 [25] Lazof D B, Goldsmith J G, Rufty T W, Linton R W. Rapid uptake of aluminum into cells of intact soybean root tips: A microanalytical study using secondary ion mass spectrometry. Plant Physiol, 1994, 106: 1107–1114 [26] Jones D L, Kochian L V. Aluminum inhibition of 1,4,5-trisphosphate signal transduction pathway in wheat roots: A role in aluminum toxicity? Plant Cell, 1995, 7: 1913–1922 [27] Larsen P B, Degenhardt J, Tai C Y, Stenzler L M, Howell S H, Kochian L V. Aluminum-resistant Arabodopsis mutants that exhibit altered patterns of aluminum accumulation and organic acid release form roots. Plant Physiol, 1998, 117: 9–17 [28] Hu L(胡蕾), Ying X-F(应小芳), Liu P(刘鹏), Xu G-D(徐根娣), Zhu S-L(朱申龙). The effect of agriculture characters of soybean to aluminum. J Zhejiang Agric Sci (浙江农业科学), 2004, (3): 148–150 (in Chinese with English abstract) [29] Liu P(刘鹏), Yang Y-S(杨悦锁), Xu G-D(徐根娣), Zhu S-L(朱申龙). The effect of aluminum stress on morphological and physiological characteristics of soybean root of seedling. Chin J Oil Crop Sci (中国油料作物学报), 2004, 26(4): 49–54(in Chinese with English abstract) [30] Liao H(廖红), Yan X-L(严小龙). Adaptive change and genotypic variation for root architecture of common bean in response to phosphorus deficiency. Acta Bot Sin (植物学报), 2000, 42(2): 158–163 (in Chinese with English abstract) [31] Yang Q(杨庆), Jin H-B(金华斌). The effect of aluminum stress on N, P and Ca absorption of peanut varieties. Chin J Oil Crop Sci (中国油料作物学报), 2000, 22(2): 68–73 (in Chinese with English abstract) [32] Zheng S J, Yang J L, He Y F, Yu X H, Zhang L, You J F, Shen R F, Matsumoto H. Immobilization of Aluminum with phosphorus in roots is associated with high aluminum resistance in buckwheat. Plant Physiol, 2005, 138: 297–303 [33] Liao H, Wan H Y, Shaff J, Wang X R, Yan X L, Kochian L V. Phosphorus and aluminum interactions in soybean in relation to aluminum tolerance. Exudation of specific organic acids from different regions of the intact root system. Plant Physiol, 2006, 141: 674–684 [34] Gaume A, Machler F, Frossard E. Aluminum resistance in two cultivars of Zea may L.: Root exudation of organic acids and influence of phosphorous nutrition. Plant Soil, 2001, 234: 73–81 |
[1] | 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345. |
[2] | 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487. |
[3] | 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557. |
[4] | 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102. |
[5] | 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118. |
[6] | 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209. |
[7] | 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800. |
[8] | 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951. |
[9] | 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571. |
[10] | 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596. |
[11] | 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643. |
[12] | 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366. |
[13] | 张国伟, 李凯, 李思嘉, 王晓婧, 杨长琴, 刘瑞显. 减库对大豆叶片碳代谢的影响[J]. 作物学报, 2022, 48(2): 529-537. |
[14] | 禹桃兵, 石琪晗, 年海, 连腾祥. 涝害对不同大豆品种根际微生物群落结构特征的影响[J]. 作物学报, 2021, 47(9): 1690-1702. |
[15] | 宋丽君, 聂晓玉, 何磊磊, 蒯婕, 杨华, 郭安国, 黄俊生, 傅廷栋, 汪波, 周广生. 饲用大豆品种耐荫性鉴定指标筛选及综合评价[J]. 作物学报, 2021, 47(9): 1741-1752. |
|