欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (5): 861-866.doi: 10.3724/SP.J.1006.2009.00861

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

小麦分子遗传图谱的加密

李艳秋1,苏志芳1,2,**,王立新1,季伟1,姚骥3,赵昌平1,*   

  1. 1北京市农林科学院北京市杂交小麦工程技术研究中心,北京100097;2内蒙古河套大学农牧科学系,内蒙古临河015000;3华中农业大学生命科学技术学院,湖北武汉430070
  • 收稿日期:2008-10-15 修回日期:2008-12-31 出版日期:2009-05-12 网络出版日期:2009-03-23
  • 通讯作者: 赵昌平
  • 基金资助:

    本研究由国家高技术研究发展计划(863计划)项目(2006AA100102)资助。

Increasing Density of Wheat Genetic Linkage Map with Molecular Makers

LI Yan-Qiu1,SU Zhi-Fang12**,WANG Li-Xin1,JI Wei1,YAO Ji3,ZHAO Chang-Ping1*   

  1. 1Beijing Engineering and Technique Research Center for Hybrid Wheat, Beijing 100097,China;2Farming-grazing Science Department of Hetao University,Linhe 015000,China;3College of Life Science and technology,Huazhong Agricultural University,Wuhan 430070,China
  • Received:2008-10-15 Revised:2008-12-31 Published:2009-05-12 Published online:2009-03-23
  • Contact: ZHAO Chang-Ping

摘要:

高密度的分子标记遗传图谱是QTL定位、图位克隆和分子标记辅助选择等研究的基础。以小麦品种“京花1/小白冬麦”的双单倍体(DH)群体和“农大015/复壮30”的重组自交系(RIL)群体为作图群体,选用在DH群体双亲间的339个多态性标记和在RIL群体双亲间的343个多态性标记分析作图群体各个株系的基因型,对本中心近年开发的SCAREST-SSR标记以及他人开发的SSREST-SSR标记进行了染色体定位,并利用连锁分析软件Joinmap 4.02个作图群体的结果整合,最终构建了10个连锁群,将217SSREST-SSRSCAR位点定位在9条染色体上,进一步提高了小麦遗传图谱的密度。

关键词: 小麦, SSR, EST-SSR, SCAR, 遗传图谱

Abstract:

High density genetic linkage map is the groundwork for mapping gene or quantitative trait loci, map-based cloning and marker-assisted selection. To increase the marker density on genetic linkage map of wheat (Triticum aestivum L.), the double haploid (DH) population derived from Jinghua 1/Xiaobai Dongmai and the recombinant inbred lines (RILs) of Nongda 015/Fuzhuang 30 were used in this study. A total of 339 polymorphic markers between the DH lines and 343 polymorphic markers between the RIL lines were detected. Using the DH population, 208 markers were mapped on 21 chromosomes, covering 3 493.6 cM; and using the RIL population, 299 markers were mapped on 34 linkage groups with the average distance of 15.5 cM. The two linkage maps had 56 consistent markers in the similar regions of chromosomes. Using Joinmap 4.0 software, ten linkage groups from the two linkage maps were integrated. This linkage map was composed of 217 markers and covered 956.2 cM of wheat genome with an average distance of 4.4 cM between markers. The proportion of segregation distortion loci was 3.2–55.6% on eight chroosomes. Most markers in this map had the consistent locations with those mentioned in previous report, however, five SSR markers were located on different chromosomes. The results enhance the density of wheat linkage map and provide more information for users.

Key words: Wheat, SSR, EST-SSR, SCAR, Linkage map


[1] Chao S, Sharp P J, Worland A J, Koebner R M D, Gale M D. RFLP-based genetic maps of homoeologous group 7 chromosomes. Theor Appl Genet, 1989, 78: 495–504

[2] Devos K M, Millan T, Gale M D. Comparative RFLP maps of homoeologous group 2 chromosomes of wheat, rye, and barley. Theor Appl Genet, 1993, 85: 784–792

[3] Devos K M, Gale M D. Comparative genetics in the grasses. Plant Mol Boil, 1997, 35: 3–15

[4] Williams J G K, Kubelik A R, Livak K J, Rafalski J A, Tingey S V. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucl Acids Res, 1990, 18: 6531–6535

[5] Vos P, Hogers R, Bleeker M, Reijans M, Van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M. AFLP: A new technique for DNA fingerprinting. Nucl Acid Res, 1995, 23: 4407–4414

[6] R?der M S, Korzun V, Wandehake K, Planschke J, Tixier M H, Leroy P, Gannal M W. A microsatellite map of wheat. Genetics, 1998, 149: 2007–2023

[7] Pestsova E, Ganal M W, R?der M S. Isolation and mapping of microsatellite markers specific for the D genome of bread wheat. Genome, 2000, 43: 689–697

[8] Gupta P, Balyan H, Edwards K, Isaac P, Korzun V, R?der M, Gautier M F, Joudrier P, Schlatter A, Dubcovsky J, De la Pena R, Khairallah M, Penner G, Hayden M, Sharp P, Keller B, Wang R, Hardouin J, Jack P, Leroy P. Genetic mapping of 66 new microsatellite (SSR) loci in bread wheat. Theor Appl Genet, 2002, 105: 413–422

[9] Somers D J, Isaac P, Edwards K. A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet, 2004, 109: 1105–1114

[10] Yu J K, Dake T M, Singh S, Benscher D, Li W, Gill B, Sorrells M E. Development and mapping of EST-derived simple sequence repeat markers for hexaploid wheat. Genome, 2004, 47: 805–818

[11] Gao L F, Jing R L, Huo N X, Li Y, Li X P, Zhou R H, Chang X P, Tang J F, Ma Z Y, Jia J Z. One hundred and one new microsatellite loci derived from ESTs (EST-SSRs) in bread wheat. Theor Appl Genet, 2004, 108: 1392–1400

[12] Chen H-M(陈海梅), Li L-Z(李林志), Wei X-Y(卫宪云), Li S-S(李斯深), Lei T-D(雷天东), Hu H-Z(胡海州), Wang H-G(王洪刚), Zhang X-S(张宪省). Exploitation, chromosomal location and genetic mapping of EST-SSRs in wheat. Chin Sci Bull (科学通报), 2005, 50(20): 2208–2216 (in Chinese)

[13] Levi A, Thomas C, Joobeur T, Zhang X, Davis. A genetic linkage map for watermelon derived from a testcross population: (Citrullus lanatus var. citroides × C. lanatus var. lanatus ) × Citrullus colocynthis. Theor Appl Genet, 2002, 105: 555–563

[14] Wu S B, Collins G, Sedgley M. A molecular linkage map of olive (Olea europaea L.) based on RAPD, microsatellite and SCAR markers. Genome, 2001, 47: 26–35

[15] Fischer B, Salakhutdinov I, Akkurt M, Eibach R, Edwards K, T?pfer R, Zyprian E. Quantitative trait locus analysis of fungal disease resistance factors on a molecular map of grapevine. Theor Appl Genet, 2004, 108: 501–515

[16] Ma J-C (马骥超), Chang N-T(常迺滔), Jiang J-L(姜俊龙), Li D-H(李大海),You X-Y(尤雪颜). Application of SSR marker in wheat resistant disease QTL and locating resistant gene. China Plant Prot (中国植保导刊), 2007, 27(6): 11–15(in Chinese with English abstract)

[17] Yang S-Z(杨随庄). Advance on study of molecular marker, gene location and gene engineering in drought resistance in wheat. Chin Agric Sci Bull (中国农学通报), 2007, 23(4): 59–63 (in Chinese with English abstract)

[18] Li W-C(李文才), Li T(李涛), Zhao F-T(赵逢涛), Li X-F(李兴锋), Wang H-G(王洪刚). QTL of wheat yield traits in D genome. Acta Agric Boreali-Sin (华北农学报), 2005, 20(1): 23–26 (in Chinese with English abstract)

[19] Li W-H(李卫华), Liu W(刘伟), Liu L(刘丽), Cao L-P(曹连莆). A review of qtl research for wheat quality traits. J Shihezi Univ (Nat Sci) (石河子大学学报·自然科学版), 2005, 23 (3): 389–394 (in Chinese with English abstract)

[20] Ji W(季伟), Wang L-X(王立新), Sun H(孙辉), Wang M-Y(王茅雁), Zhao C-P(赵昌平). Predigestion of wheat SSR analysis protocol. J Agric Biotechnol (农业生物技术学报), 2007, 15(5): 907–908 (in Chinese with English abstract)

[21] Li W-H(李卫华), Liu W(刘伟), You M-S(尤明山), Xu J(许杰), Liu C-L(刘春雷), Li B-Y(李保云), Liu G-T(刘广田). Construction of wheat molecular linkage map using different SSR markers and the polymorphism of the markers. J Triticeae Crops (麦类作物学报), 2007, 27(1): 1–6 (in Chinese with English abstract)

[22] Wang Z-L(王竹林), Liu S-D(刘曙东), Liu H-Y(刘惠远), He Z-H(何中虎), Xia X-C(夏先春), Chen X-M(陈新民). Acta Bot Boreal-Occident Sin (西北植物学报), 2006, 26(5): 886–892(in Chinese with English abstract)

[23] Nelson J C, Sorrells M E, Van-Deynze A E, Lu Y H, Atkinson M, Bernard M, Leroy P, Faris J D, Anderson J A. Molecular mapping of wheat: Major genes and rearrangements in homeologous 4, 5 and 7. Genetics, 1995, 141: 721–731

[24] Kojima T, Nagaoka T, Noda K. Genetic linkage map of ISSR and RAPD markers in Einkorn wheat in relation to that of RFLP markers. Theor Appl Genet, 1998, 96: 37–45

[25] Blanco A, Bellomo M P, Cenci A, De Giovanni C, D’Ovidio R, Iacono E, Laddomada B, Pagnotta M A, Porceddu E, Sciancalepore A, Simeone R, Tanzarella O. A genetic linkage map of durum wheat. Theor Appl Genet, 1998, 97: 721–728

[26] Song X-L(宋宪亮), Sun X-Z(孙学振), Zhang T-Z(张天真). Segregation distortion and its effect on genetic mapping in plants. J Agric Biotechnol (农业生物技术学报), 2006, 14(2): 286–292 (in Chinese with English abstract)
[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[3] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[4] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[5] 陈小红, 林元香, 王倩, 丁敏, 王海岗, 陈凌, 高志军, 王瑞云, 乔治军. 基于高基元SSR构建黍稷种质资源的分子身份证[J]. 作物学报, 2022, 48(4): 908-919.
[6] 张霞, 于卓, 金兴红, 于肖夏, 李景伟, 李佳奇. 马铃薯SSR引物的开发、特征分析及在彩色马铃薯材料中的扩增研究[J]. 作物学报, 2022, 48(4): 920-929.
[7] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[8] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[9] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[10] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[11] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[12] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[13] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[14] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[15] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!