欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (5): 867-874.doi: 10.3724/SP.J.1006.2009.00867

• 耕作栽培·生理生化 • 上一篇    下一篇

基肥配比和拔节期追氮对糯玉米淀粉胶凝和回生特性的影响

陆大雷1,王德成1,景立权1,韩晴1,郭换粉1,赵久然2,陆卫平1,*   

  1. 1扬州大学江苏省作物遗传生理重点实验室/农业部长江中下游作物生理生态与栽培重点开放实验室,江苏扬州225009;2北京市农林科学院玉米研究中心,北京100097
  • 收稿日期:2008-08-11 修回日期:2009-02-11 出版日期:2009-05-12 网络出版日期:2009-03-23
  • 通讯作者: 陆卫平,0514-87979377
  • 基金资助:

    本研究由国家自然科学基金项目(30270831),北京市自然科学基金项目(YZPT02-06)资助。

Starch Gelatinization and Retrogradation Properties under different Basic Fertilizer Regimes and Nitrogen Topdressing at Jointing Stage of Waxy Maize

LU Da-Lei1,WANG De-Cheng1,JING Li-Quan1,HAN Qing1,GUO Huan-Fen1,ZHAO Jiu-Ran2,LU Wei-Ping1*   

  1. 1Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Crop Physiology,Ecology and Cultivation in Middle and Lower Reaches of Yangtse River of Ministry of Agriculture, Yangzhou University,Yangzhou 225009,China;2Maize Research Center,Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097,China
  • Received:2008-08-11 Revised:2009-02-11 Published:2009-05-12 Published online:2009-03-23
  • Contact: LU Wei-Ping,0514-87979377

摘要:

以苏玉糯4号为材料,采用二因素裂区设计,研究了不同基肥配比(N 75 kg hm-2、纯N 75 kg hm-2+K2O 70 kg hm-2、纯N 75 kg hm-2+P2O5 65 kg hm-2和纯N 75 kg hm-2 +P2O5 65 kg hm-2+K2O 70 kg hm-2)和拔节期追氮(0150300 kg hm-2)对糯玉米淀粉胶凝和回生特性的影响。结果表明,淀粉和回生淀粉的起始温度、峰值温度和终值温度虽然受到施肥处理的影响,但总体上变异较小。热焓值受基肥配比影响较小,糊化范围和峰值指数受拔节期追氮量影响较小。在不同基肥配比处理下,糊化范围在基施氮钾时最低,氮磷钾合理配施处理下最高,峰值指数表现和糊化范围相反。在拔节期不同追氮量处理下,热焓值以追氮150 kg hm-2时最高,追氮300 kg hm-2或不追氮无显著差异。胶凝淀粉冷藏后发生回生,表现为转变温度、热焓值和峰值指数降低,糊化范围变宽。和仅基施氮相比,增施磷或()钾都可降低淀粉的回生值和回生淀粉的热焓值,拔节期追氮处理的这两项指标均劣于不追氮处理。回生值与回生淀粉的热焓值和峰值指数显著正相关,相关系数分别为0.90 (P < 0.01)0.41 (P < 0.05); 原淀粉的热焓值与峰值指数极显著正相关, 相关系数为0.65 (P < 0.01),与回生淀粉热焓值显著正相关,相关系数0.44 (P < 0.05),与终值温度显著负相关,相关系数-0.41 (P < 0.05)。在本试验条件下,以氮磷钾均衡基施并拔节期追氮150 kg hm-2时,淀粉胶凝和回生特性较为理想,表现为热焓值较高,回生值较低。

关键词: 糯玉米, 淀粉, DSC, 胶凝, 回生, 基肥配比, 拔节期追氮

Abstract:

Proper fertilizer managements can improve the starch gelatinization and retrogradation properties of waxy maize (Zea mays L. Ceratina Kulesh). The split-design experiment was conducted using waxy maize cultivar Suyunuo 4 with four main plots subjected to basal fertilizer treatments of N 75 kg ha-1, N 75 kg ha-1+K2O 70 kg ha-1, N 75 kg ha-1+P2O5 65 kg ha-1, and N 75 kg ha-1+P2O5 65 kg ha-1+K2O 70 kg ha-1, respectively in 2007 and 2008. The three split plots were topdressed with nitrogen of 0, 150, and 300 kg ha-1 at jointing stage, respectively. Though onset temperature (To), peak temperature (Tp) and conclusion temperature (Tc) of native starch and retrogradated starch were affected by fertilizer treatments, the variation was little. No significant effects were observed for basic fertilizer treatments on the enthalpy of gelatinization (ΔHgel), and for N topdressing treatments on gelatinization range (R) and peak height index (PHI). The R-value was the lowest in the treatment with only N and K in basal fertilizer, and the highest in the treatment with N, P, and K in basal fertilizer. The changes of PHI showed an opposite trend to R. The ΔHgel was the highest in the treatment with medium N topdressing (150 kg ha-1). Gelatinized starch became retrograded with lower To, Tp, Tc, enthalpy of retrogradation (ΔHret), and PHI, as well as wider R. Compared with the treatment of only N applied in basal fertilizer, the percentage of retrogradation and ΔHret decreased when P and/or K added in the basal fertilizer. The two indicators were higher in the treatments with N topdressing than without N topdressing. The percentage of retrogradation was positively correlated with ΔHret (r = 0.90, P < 0.01) and PHI of retrograded starch (r = 0.41, P < 0.05). ΔHgel was positively correlated with PHI (r = 0.65, P < 0.01) and ΔHret (r = 0.44, P < 0.05), but negatively correlated with Tc (r = -0.41, P < 0.05). It is recommended to apply balanced fertilization with N, P, and K combining with moderate N topdressing under conditions similar to the experiment to improve gelatinization and retrogradation properties of waxy maize starch.

Key words: Waxy maize, Starch, DSC, Gelatinization, Retrogradation, Basal fertilizer ratio, N topdressing at joint stage


[1] Singh N, Singh J, Kaur L, Sodhi N S, Gill B S. Morphological, thermal and rheological properties of starches from different botanical sources. Food Chem, 2003, 81: 219–231

[2] Kuakpetoon D, Wang Y. Structural characteristics and physicochemical properties of oxidized corn starches varying in amylose content. Carbohyd Res, 2006, 341: 1896–1915

[3] Ji Y, Wong K, Hasjim J, Pollak L M, Duvick S, Jane J. Structure and function of starch from advanced generations of new corn lines. Carbohyd Polym, 2003, 5: 305–319

[4] Seetharaman K, Tziotis A, Borras F, White P J, Ferrer, M, Robutti J. Thermal and functional characterization of starch from Argentinean corn. Cereal Chem, 2001, 78: 379–386

[5] Yamin F F, Lee M, Pollak L M, White P J. Thermal properties of starch in corn variants isolated after chemical mutagenesis of inbred line B73. Cereal Chem, 1999, 76: 175–181

[6] Sandhu S K, Singh N. Some properties of corn starches: II. Physicochemical, gelatinization, retrogradation, pasting and gel textural properties. Food Chem, 2007, 101: 1499–1507

[7] Noda T, Takahata Y, Sato T, Ikoma H, Mochida H. Physicochemical properties of starches from purple and orange fleshed sweet potato roots at two levels of fertilizer. Starch/St?rke, 2006, 48: 395–399

[8] Singh M, Sandhu K S, Kaur M. Physicochemical properties including granular morphology, amylose content, swelling and solubility, thermal and pasting properties of starches from normal, waxy, high amylose and sugary corn. Prog Food Biopolymer Res, 2005, 1: 43–54

[9] Singh N, Inouchi N, Nishinari K. Structural, thermal and viscoelastic characteristics of starches separated from normal, sugary and waxy maize. Food Hydrocolloid, 2006, 20: 923–935

[10] Sandhu K S, Singh N, Lim S. A comparison of native and acid thinned normal and waxy corn starches: Physicochemical, thermal, morphological and pasting properties. LWT Food Sci Technol, 2007, 40: 1527–1536

[11] Sandhu K S, Kaur M, Singh N, Lim S. A comparison of native and oxidized normal and waxy corn starches: physicochemical, thermal, morphological and pasting properties. LWT Food Sci Technol, 2008, 41: 1000–1010

[12] Lu D-L(陆大雷), Lu W-P(陆卫平), Zhao J-R(赵久然), Wang D-C(王德成). Effects of basic fertilizer treatments and nitrogen topdressing at jointing stage on starch RVA characteristics of waxy maize. Acta Agron Sin (作物学报), 2007, 34(7): 1253–1258 (in Chinese with English abstract)

[13] Lu H-H(陆虎华), Chen G-Q(陈国清), Xue L(薛林), Huang X-L(黄小兰), Shi M-L(石明亮), Yin Z-T(印志同). Study on the breeding of new waxy maize hybrid Suyunuo No.4 of fresh and processing type. J Jinling Inst Tech (金陵科技学院院报), 2005, 21(3): 58–61(in Chinese with English abstract)

[14] Sasaki T, Yasui T, Matsuki J. Effect of amylase content on gelatinization, retrogradation and pasting properties of starches from waxy and non-waxy wheat and their F1 seeds. Cereal Chem, 2000, 77: 58–63

[15] Karim A A, Norziah M H, Seow C C. Methods for the study of starch retrogradation. Food Chem, 2000, 71: 9–36

[16] Aggarwal V, Singh N, Kamboj S S, Brar P S. Some properties of seeds and starches separated from different Indian pea cultivars. Food Chem, 2004, 85: 585–590

[17] Xu L J, Xie J K, Kong X L, Bao J S. Analysis of genotypic and environmental effects on rice starch: 2. Thermal and retrogradation properties. J Agric Food Chem, 2004, 52: 6017–6022

[18] Sandhu K S, Singh N, Malhi N S. Physicochemical and thermal properties of starches separated from corn produced from crosses of two germ pools. Food Chem, 2005, 89: 541–548

[19] Singh N, Kaur L, Sandhu K S, Kaur J, Nishinari K. Relationships between physicochemical, morphological, thermal, rheological properties of rice starches. Food Hydrocolloid, 2006, 20: 532–542
[1] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[2] 陈云, 刘昆, 张宏路, 李思宇, 张亚军, 韦佳利, 张耗, 顾骏飞, 刘立军, 杨建昌. 机插密度和穗肥减量对优质食味水稻品种籽粒淀粉合成的影响[J]. 作物学报, 2021, 47(8): 1540-1550.
[3] 张骁, 闫岩, 王文辉, 郑恒彪, 姚霞, 朱艳, 程涛. 基于小波分析的水稻籽粒直链淀粉含量高光谱预测[J]. 作物学报, 2021, 47(8): 1563-1580.
[4] 杨帆, 钟晓媛, 李秋萍, 李书先, 李武, 周涛, 李博, 袁玉洁, 邓飞, 陈勇, 任万军. 再生稻次适宜区迟播栽对不同杂交籼稻淀粉RVA谱的影响[J]. 作物学报, 2021, 47(4): 701-713.
[5] 董二伟, 王劲松, 武爱莲, 王媛, 王立革, 韩雄, 郭珺, 焦晓燕. 行距和密度对高粱籽粒灌浆、淀粉及氮磷钾累积特征的影响[J]. 作物学报, 2021, 47(12): 2459-2470.
[6] 黄素华, 林席跃, 雷正平, 丁在松, 赵明. 强再生力水稻品种碳氮营养与激素生理特征研究[J]. 作物学报, 2021, 47(11): 2278-2289.
[7] 赵春芳,岳红亮,田铮,顾明超,赵凌,赵庆勇,朱镇,陈涛,周丽慧,姚姝,梁文化,路凯,张亚东,王才林. 江苏和东北粳稻稻米理化特性及WxOsSSIIa基因序列分析[J]. 作物学报, 2020, 46(6): 878-888.
[8] 靳舒荣,王艳玫,常悦,王月华,李加纳,倪郁. 不同收获指数甘蓝型油菜β-淀粉酶活性及其基因家族成员的表达分析[J]. 作物学报, 2019, 45(8): 1279-1285.
[9] 卢媛,艾为大,韩晴,王义发,李宏杨,瞿玉玑,施标,沈雪芳. 糯玉米自交系SSR标记遗传多样性及群体遗传结构分析[J]. 作物学报, 2019, 45(2): 214-224.
[10] 杨勇,陆彦,郭淑青,石仲慧,赵杰,范晓磊,李钱峰,刘巧泉,张昌泉. 籼稻背景下导入Wx in等位基因改良稻米食味和理化品质[J]. 作物学报, 2019, 45(11): 1628-1637.
[11] 鱼海跃,韩紫璇,张钰石,段留生,张明才,李召虎. 冠菌素对玉米籽粒灌浆特性与淀粉合成的调控效应[J]. 作物学报, 2019, 45(10): 1535-1543.
[12] 施龙建,文章荣,张世博,王珏,陆卫平,陆大雷. 开花期干旱胁迫对鲜食糯玉米产量和品质的影响[J]. 作物学报, 2018, 44(8): 1205-1211.
[13] 李莎莎,马耕,刘卫星,康娟,陈雨露,胡阳阳,张盼盼,王晨阳. 大田长期水氮处理对土壤氮素及小麦籽粒淀粉糊化特性的影响[J]. 作物学报, 2018, 44(7): 1067-1076.
[14] 李春燕,张雯霞,张玉雪,姚梦浩,丁锦峰,朱新开,郭文善,封超年. 小麦籽粒淀粉与面粉的理化特性差异[J]. 作物学报, 2018, 44(7): 1077-1085.
[15] 胡阳阳, 卢红芳, 刘卫星, 康娟, 马耕, 李莎莎, 褚莹莹, 王晨阳. 灌浆期高温与干旱胁迫对小麦籽粒淀粉合成关键酶活性及淀粉积累的影响[J]. 作物学报, 2018, 44(04): 591-600.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!