欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (5): 875-883.doi: 10.3724/SP.J.1006.2009.00875

• 耕作栽培·生理生化 • 上一篇    下一篇

缺磷胁迫增强了马铃薯植株的耐旱能力

王西瑶1,朱 涛2,邹雪1,王吉生1,王谧3   

  1. 1四川农业大学农学院;2四川农业大学资源与环境学院;3四川农业大学生命科学与理学院,四川雅安625014
  • 收稿日期:2008-09-13 修回日期:2008-02-14 出版日期:2009-05-12 网络出版日期:2009-03-23
  • 基金资助:

    本研究由四川省科技厅马铃薯优质高产关键技术研究与产业化示范项目(05NG001-021-2)资助。

Drought Tolerance Enhanced by phosphorus Deficitiency in Potato Plants

WANG Xi-Yao1,ZHU Tao2,ZOU Xue1,WANG Ji-Sheng1,WANG Mi3   

  1. 1College of Agronomy;2College of Resource and Environment;3College of Biology and Science,Sichuan Agricultural University,Ya'an 625014,China
  • Received:2008-09-13 Revised:2008-02-14 Published:2009-05-12 Published online:2009-03-23

摘要:

大多数研究结果表明, 充足的磷营养能促进光合作用和根系生长, 增加束缚水含量和膜稳定性, 提高植株的耐旱能力。我们在对马铃薯24个品种()的盆栽沙培试验中发现缺磷胁迫反而增强了植株的耐旱能力。为进一步研究磷营养对马铃薯植株耐旱能力的影响, 以两个远缘杂交后代分离群体的60个株系(30 d苗龄)为材料, 在正常磷和缺磷的1/2 MS矿质营养液中培养16 d, 8% PEG8000模拟干旱胁迫3 h, 干旱胁迫前后取样测定生理指标。结果表明, 缺磷处理的植株矮小且气孔密度下降, 长出更多新根;叶片和根系的可溶性糖、脯氨酸(Pro)含量以及叶片过氧化物酶(POD)活性与正常磷处理相比升高了一倍左右。干旱胁迫后缺磷处理叶片超氧化物歧化酶(SOD)活性极显著升高, 叶片未萎蔫;而正常磷处理叶片Pro、丙二醛(MDA)含量均显著升高, 叶片明显萎蔫, 并且缺磷处理可溶性糖、根系Pro含量以及PODSOD活性都显著或极显著高于正常磷处理。说明:马铃薯在适应缺磷胁迫中发生的形态和生理代谢改变有助于提高其耐旱能力。

关键词: 马铃薯, 缺磷胁迫, 形态变化, 生理变化, 耐旱能力

Abstract:

Many morphological and physiological adaptations responding to drought or phosphorus (P) deficiency have been reported. But the researches on the relationship between P nutrition and drought tolerance are less, and the results are not consistent. The majority findings indicate that sufficient P nutrition can promote photosynthesis and growth of roots, increase bound water proportion and cell membrane stability and so on, thus enhance the adult plant drought tolerance. But it is found in our preliminary studies that potato grown in low-P environment showed a strong resistance to drought. This experiment aimed to verify and explain this phenomenon in physiological level. A total of 60 lines with 30-day-old Seedlings chosen from two segregating populations of distant-hybridization progenies were cultured in 1/2 MS mineral nutrient solution with two treatments of normal P and without P for 16 d respectively. Then, 8% PEG8000 was used to simulate drought stress for 3 h. Before and after drought stress, the concentrations of proline (Pro), soluble sugar, malonaldehyde (MDA) and the activities of peroxidase (POD) and superoxide dismutase (SOD) were measured, respectively. P deficient treatment increased the number of new roots, but reduced the leaf area and stomatal density. Before drought stress, the Pro and soluble sugar concentrations, POD activity of P deficient plants were increased and reached about 2 times higher compared to P sufficient plants. After 3 h drought stress, plants in P deficient treatment did not wilted, and the soluble sugar, root Pro concentrations, POD and SOD activities were significantly or very significantly higher, but plants in P sufficient treatment showed severely wilting and the MDA, leaf Pro concentrations evidently increased. Therefore, we can conclude that the morphological and physiological changes adapting to P deficiency enhance the drought tolerance of potatoes.

Key words: Potato, Phosphorus deficiency stress, Morphological changes, Physiological changes, Drought tolerance


[1] Kang Z-L(康宗利), Yang Y-H(杨玉红), Zhang L-J(张立军). Molecular mechanism of responsing to drought stress in plants. J Maize Sci (玉米科学), 2006, 14(2): 96–100(in Chinese with English abstract)

[2] Wu P, Ma L G, Hou X L, Wang M Y, Wu Y R, Liu F Y, Deng X W. Phosphate starvation triggers distinct alteration of genome expression in Arabidopsis roots and leaves. Plant Physiol, 2003, 132: 1260–1271

[3] Caruso A, Chefdor F, Carpin S, Depierreux C, Delmotte F M, Kahlem G, Morabito D. Physiological characterization and identification of genes differentially expressed in response to drought induced by PEG6000 in Populus Canadensis leaves. J Plant Physiol, 2008, 165: 932–941

[4] Zhang S-Q(张岁岐), Shan L(山仑). The effect of phosphorus nutrition on drought resistance of spring wheat. Chin J Appl Environ Biol (应用与环境生物学报), 1998, 4(2): 115–119 (in Chinese with English abstract)

[5] Shen Y-F(沈玉芳), Qu D(曲东), Wang B-L(王保莉), Zhang X-C(张兴昌). Effects of phosphorus on root hydraulic conductivity of crops under drought stress. Acta Agron Sin (作物学报), 2005, 31(2): 214–218 (in Chinese with English abstract)

[6] Zhong P(钟鹏), Zhu Z-L(朱占林), Li Z-G(李志刚), Wang J-L(王建丽), Zhang Y-L(张玉玲). Effects of low-phosphorus and drought stresses on protective enzyme activities of soybean. Chin Agric Sci Bull (中国农学通报), 2005, 21(2): 153–154(in Chinese with English abstract)

[7] Rodriguez D, Goudriaan J. Effects of phosphorus and drought stress on dry mater and phosphorus allocation in wheat. J Plant Nutr, 1995, 18: 2501–2517

[8] Kramer P J. Plant and Water Relationships: A Modern Synthesis. New York: McGraw-Hill, 1969. p 1

[9] Gao J-F(高俊凤). Experimental Guidance for Plant Physiology (植物生理学实验指导). Beijing: Higher Education Press, 2006 (in Chinese)

[10] Xiong Q-E(熊庆娥). Experimental Tutorial for Plant Physiology (植物生理学实验教程). Sichuan: Sichuan Publish House of Science & Technology, 2003 (in Chinese)

[11] Shang Q-M(尚庆茂), Li X-F(李晓芬), Zhang Z-G(张志刚). Molecular mechanisms of cross adaptation in plants. Acta Bot Boreal-Occident Sin (西北植物学报), 2007, 27(9): 1921–1928(in Chinese with English abstract)

[12] Li F(李锋), Pan X-H(潘晓华), Liu S-Y(刘水英), Li M-Y(李木英), Yang F-S(杨福孙). Effect of phosphorus deficiency stress on root morphology and nutrient absorption of rice cultivars. Acta Agron Sin (作物学报), 2004, 30(5): 438–442(in Chinese with English abstract)

[13] Williamson L C, Ribrioux S P C P, Fitter A H, Leyser H M O. Phosphate availability regulates root system architecture in Arabidopsis. Plant Physiol, 2001, 126: 875–882

[14] Hernández G, Ramírez M, Valdés-López O, Tesfaye M, Graham M A, Czechowski T, Schlereth A, Wandrey M, Erban A, Cheung F, Wu H C, Lara M, Town C D, Kopka J, Udvardi M K, Vance C P. Phosphorus stress in common bean: Root transcript and metabolic responses. Plant Physiol, 2007, 144: 752–767

[15] Yu H-Q(于海秋), Peng X-X(彭新湘), Yan X-L(严小龙), Cao M-J(曹敏建). Effect of phosphorus deficiency on microstructure and photosynthesis in soybean leaves. J Jilin Agric Univ (吉林农业大学学报), 2006, 28(4): 127–132(in Chinese with English abstract)

[16] Zhang K-W(张可炜), Wang X-L(王贤丽), Li K-P(李坤朋), Zhang J-R(张举仁). Effect of low-level phosphorus stress on photosynthetic characteristics of maize inbred line seedlings with low-level phosphorus tolerance. J Shandong Univ (Nat Sci) (山东大学学报·理学版), 2007, 42(3): 89–94(in Chinese with English abstract)

[17] Guo C-J(郭程瑾), Li B-X(李宾兴), Wang B(王斌), Li Y-M(李雁鸣), Xiao K(肖凯). Photosynthetic characteristics and relative physiological mechanism of wheat cultivars with different phosphorus efficiencies. Acta Agron Sin (作物学报), 2006, 32(8): 1209–1217(in Chinese with English abstract)

[18] Pen Z-P(彭正萍), Li C-J(李春俭), Men M-X(门明新). Effects of P deficiency on photosynthetic characters and yield in two wheat cultivars with different spike types. Acta Agron Sin (作物学报), 2004, 30(8): 739–744(in Chinese with English abstract)

[19] Liu F-J(刘建福). Influence of phosphorus stress on photosynthetic characteristics of macadamia seedlings. J Southwest China Norm Univ (Nat Sci) (西南师范大学学报·自然科学版), 2007, 32(2): 45–48(in Chinese with English abstract)

[20] Liu H-C(刘厚诚), Chen G-J(陈国菊), Chen R-Y(陈日远), Kuang Y-H(邝炎华), Wu X-Y(吴筱颖). Anatomical structures of seedling of Vigna unquiculata ssp. sesquipedalis cultivars under phosphorus deficiency stress. J Plant Resour Environ (植物资源与环境学报), 2004, 3(1): 48–52(in Chinese with English abstract)

[21] Liu G-D(刘国栋), Li J-Y(李继云), Li Z-S(李振声). Genotypic differences in some characters of wheat shoot system under low-P stress. Acta Pedolog Sin (土壤学报), 1998, 35(2): 235–241(in Chinese with English abstract)

[22] Yao Q L, Yang K C, Pan G T, Rong T Z. The effects of low phosphorus stress on morphological and physiological characteristics of maize (Zea mays L.) landraces. Agric Sci China, 2007, 6: 559–566

[23] Shinozaki K, Yamaguchi-Shinozaki K. Gene networks involved in drought stress response and tolerance. J Exp Bot, 2007, 58: 221–227

[24] Vasquez-Robinet C, Mane S P, Ulanov A V, Watkinson J I, Stromberg V K, Koeyer D D, Schafleitner R, Willmot D B, Bonierbale M, Bohnert H J, Grene R. Physiological and molecular adaptations to drought in Andean potato genotypes. J Exp Bot, 2008, 59: 2109–2123
[1] 王海波, 应静文, 何礼, 叶文宣, 涂卫, 蔡兴奎, 宋波涛, 柳俊. rDNA和端粒重复序列鉴定马铃薯和茄子体细胞杂种染色体丢失和融合[J]. 作物学报, 2022, 48(5): 1273-1278.
[2] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[3] 冯亚, 朱熙, 罗红玉, 李世贵, 张宁, 司怀军. 马铃薯StMAPK4响应低温胁迫的功能解析[J]. 作物学报, 2022, 48(4): 896-907.
[4] 张霞, 于卓, 金兴红, 于肖夏, 李景伟, 李佳奇. 马铃薯SSR引物的开发、特征分析及在彩色马铃薯材料中的扩增研究[J]. 作物学报, 2022, 48(4): 920-929.
[5] 谭雪莲, 郭天文, 胡新元, 张平良, 曾骏, 刘晓伟. 黄土高原旱作区马铃薯连作根际土壤微生物群落变化特征[J]. 作物学报, 2022, 48(3): 682-694.
[6] 余慧芳, 张卫娜, 康益晨, 范艳玲, 杨昕宇, 石铭福, 张茹艳, 张俊莲, 秦舒浩. 马铃薯CrRLK1Ls基因家族的鉴定及响应晚疫病菌信号的表达分析[J]. 作物学报, 2022, 48(1): 249-258.
[7] 荐红举, 尚丽娜, 金中辉, 丁艺, 李燕, 王季春, 胡柏耿, Vadim Khassanov, 吕典秋. 马铃薯PIF家族成员鉴定及其对高温胁迫的响应分析[J]. 作物学报, 2022, 48(1): 86-98.
[8] 许德蓉, 孙超, 毕真真, 秦天元, 王一好, 李成举, 范又方, 刘寅笃, 张俊莲, 白江平. 马铃薯StDRO1基因的多态性鉴定及其与根系性状的关联分析[J]. 作物学报, 2022, 48(1): 76-85.
[9] 唐锐敏, 贾小云, 朱文娇, 印敬明, 杨清. 马铃薯热激转录因子HsfA3基因的克隆及其耐热性功能分析[J]. 作物学报, 2021, 47(4): 672-683.
[10] 李鹏程, 毕真真, 孙超, 秦天元, 梁文君, 王一好, 许德蓉, 刘玉汇, 张俊莲, 白江平. DNA甲基化参与调控马铃薯响应干旱胁迫的关键基因挖掘[J]. 作物学报, 2021, 47(4): 599-612.
[11] 秦天元, 刘玉汇, 孙超, 毕真真, 李安一, 许德蓉, 王一好, 张俊莲, 白江平. 马铃薯StIgt基因家族的鉴定及其对干旱胁迫的响应分析[J]. 作物学报, 2021, 47(4): 780-786.
[12] 蒋伟, 潘哲超, 包丽仙, 周福仙, 李燕山, 隋启君, 李先平. 马铃薯资源晚疫病抗性的全基因组关联分析[J]. 作物学报, 2021, 47(2): 245-261.
[13] 柳燕兰, 郭贤仕, 张绪成, 马明生, 王宏康. 密度和施肥对旱地马铃薯干物质积累、产量和水肥利用的影响[J]. 作物学报, 2021, 47(2): 320-331.
[14] 牛娜, 刘震, 黄鹏翔, 朱金勇, 李志涛, 马文婧, 张俊莲, 白江平, 刘玉汇. 马铃薯GAUT基因家族的全基因组鉴定及表达分析[J]. 作物学报, 2021, 47(12): 2348-2361.
[15] 吴春花, 普雪可, 周永瑾, 勉有明, 苗芳芳, 李荣. 宁南旱区沟垄集雨结合覆盖对土壤水热肥与马铃薯产量的影响[J]. 作物学报, 2021, 47(11): 2208-2219.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!