作物学报 ›› 2009, Vol. 35 ›› Issue (9): 1576-1583.doi: 10.3724/SP.J.1006.2009.01576
彭琦1,胡燕1,杜培粉1,2,谢青轩1,2,阮颖1,2,*,刘春林1,*
PENG Qi1,HU Yan1,DU Pei-Fen1,2,XIE Qing-Xuan1,2,RUAN Ying1,2,*,LIU Chun-Lin1*
摘要:
利用抑制差减杂交技术构建了20 d和35 d甘蓝型油菜湘油15发育种子特异表达基因的SSH文库。随机挑取单菌落进行PCR表明,文库质量较好。在20 d和35 d SSH文库中随机挑选489个阳性克隆进行测序,获得452条高质量的表达序列标签(EST)。对序列进行Blast比对及功能注释,比较20 d和35 d SSH文库的基因表达谱,发现在20 d SSH库中参与糖代谢的基因出现频率较高,而在35 d SSH库中与脂肪酸储存有关的油体蛋白家族、与脂肪酸转运有关的柠檬酸合酶、与脂肪酸合成有关的酰基载体蛋白去饱和酶等,参与油脂代谢相关基因出现频率较高。该结果对进一步研究油菜脂肪酸代谢调控的分子机制打下了基础。
[1] DiatchenkoL, LauY F, CampbellA P, ChenchikA, MoqadamF, HuangB, LukyanovS, LukyanovK, GurskayaN, SverdlovE D, SiebertP D. Suppression subtractive hybridization: A method for generating differentially regulated or tissue specific cDNA probes and libraries. Proc Natl Acad Sci USA, 1996, 93: 6025-6030[2] Diatchenko L, Lukyanov S, Lau Y F, Siebert P D. Suppression subtractive hybridization: A versatile method for identifying differentally expressed genes. Methods Enzymol, 1999, 303: 349-380[3] Siebert P D, Chenchik A, Kellogg D E, Lukyanov K A, Lukyanov S A. An improved PCR method for walking in uncloned genomic DNA. Nucl Acids Res, 1995, 23: 1087-1088[4] Lukyanov K A, Launer G A, Tarabykin V S, Zaraisky A G, Lukyanov S A. Inverted terminal repeats permit the average length of amplified DNA fragments to be regulated during preparation of cDNA libraries by polymerase chain reaction. Anal Biochem, 1995, 229: 198-202[5] Lambe T, Finlay D, Murphyand M,Martin F. Differential expression of connexin 43 in mouse mammary cells. Cell Biol Intl, 2006, 30: 472-479[6] Sangrado-Vegas A, Lennington J B, Smith T J. Molecular cloning of an IL-8-like CXC chemokine and tissue factor in rainbow trout (Oncorhynchus mykiss) by use of suppression subtractive hybridization. Cytokine, 2002, 17: 66-70[7] Li R J, Wang H Z, Mao H, Lu Y T, Hua W. Identification of differentially expressed genes in seeds of two near-isogenic Brassica napus lines with different oil content. Planta, 2006, 224: 952-962[8] Li X-Y(李小艳), Zhao Y(赵云), Zhou Y-T(周云涛), Li Y-Y(李熠毅), Wang M-L(王茂林). Construction and primary analysis of suppression subtractive library of dwarf mutant ‘NDF-1’in Brassica napus. Chin J Oil Crop Sci (中国油料作物学报), 2006, 28(4): 396-402(in Chinese with English abstract)[9] Liu Y(刘阳), Wang M-L(王茂林), Qiu F(邱峰), Zhou Y-T(周云涛), Zhao Y(赵云), Zhang F(张帆). The construction of the suppression subtractive library of the Brassica napus mutant Cr3529. J Sichuan Univ (四川大学学报), 2005, 42(5): 1029-1032(in Chinese with English abstract)[10] Ohlrogge J B, Kuhn D N, Stumpf P K. Subcellular localization of acyl carrier protein in leaf protoplasts of Spinacia oleracea. Proc Natl Acad Sci USA, 1979, 76: 1194-1198[11] Ohlrogge J, Browse J. Lipid biosynthesis. Plant Cell, 1995, 7: 957-970[12] Thelen J J, Ohlrogge J B. Metabolic engineering of fatty acid biosynthesis in plants. Metab Eng, 2002, 4: 12-21[13] Beisson F, Koo A J, Ruuska S, Schwender J, Pollard M, Thelen J J, Paddock T, Salas J J, Savage L, Milcamps A, Mhaske V B, Cho Y, Ohlrogge J B. Arabidopsis genes involved in acyl lipid metabolism: A 2003 census of the candidates, a study of the distribution of expressed sequence tags in organs, and a web-based database. Plant Physiol, 2003, 132: 681-697[14] Huang A H C. Oleosin and oil bodies in seeds and other organs. Plant Physiol, 1996, 110: 1055-1061[15] Murphy D J, Vance J. Mechanisms of lipid-body formation. Trends Biochem Sci, 1999, 24: 109-115[16] O'Hara P, Slabas A R, Fawcett T. Fatty acid and lipid biosynthetic genes are expressed at constant molar ratios but different absolute levels during embryogenesis. Plant Physiol, 2002, 129: 310-320[17] Ohlrogge J, Pollard M, Bao X, Focke M, Girke T, Ruuska S, Mekhedov S, Benning C. Fatty acid synthesis: From CO2 to functional genomics. Biochem Soc Trans, 2005, 28: 567-573[18] Morgunov I, Srere P A. Interaction between citrate synthase and malate dehydrogenase: Substrate channeling of oxaloacetate. J Biol Chem, 1998, 273: 29540-29544[19] Pracharoenwattana I, Cornah J E, Smith S M. Arabidopsis peroxisomal citrate synthase is required for fatty acid respiration and seed germination. Plant Cell, 2005, 17: 2037-2048 Koyama H, Kawamura A, Kihara T, Hara T, Takita E, Shibata D. Over expression of mitochondrial citrate synthase in Arabidopsis thaliana improved growth on a phosphorus-limited soil. Plant Cell Physiol, 2000, 41: 1030-1037 |
[1] | 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371. |
[2] | 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501. |
[3] | 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850. |
[4] | 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607. |
[5] | 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769. |
[6] | 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395. |
[7] | 石磊, 苗利娟, 黄冰艳, 高伟, 张忠信, 齐飞艳, 刘娟, 董文召, 张新友. 花生AhFAD2-1基因启动子及5'-UTR内含子功能验证及其低温胁迫应答[J]. 作物学报, 2021, 47(9): 1703-1711. |
[8] | 薛晓梦, 吴洁, 王欣, 白冬梅, 胡美玲, 晏立英, 陈玉宁, 康彦平, 王志慧, 淮东欣, 雷永, 廖伯寿. 低温胁迫对普通和高油酸花生种子萌发的影响[J]. 作物学报, 2021, 47(9): 1768-1778. |
[9] | 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510. |
[10] | 李杰华, 端群, 史明涛, 吴潞梅, 柳寒, 林拥军, 吴高兵, 范楚川, 周永明. 新型抗广谱性除草剂草甘膦转基因油菜的创制及其鉴定[J]. 作物学报, 2021, 47(5): 789-798. |
[11] | 唐鑫, 李圆圆, 陆俊杏, 张涛. 甘蓝型油菜温敏细胞核雄性不育系160S花药败育的形态学特征和细胞学研究[J]. 作物学报, 2021, 47(5): 983-990. |
[12] | 周新桐, 郭青青, 陈雪, 李加纳, 王瑞. GBS高密度遗传连锁图谱定位甘蓝型油菜粉色花性状[J]. 作物学报, 2021, 47(4): 587-598. |
[13] | 李书宇, 黄杨, 熊洁, 丁戈, 陈伦林, 宋来强. 甘蓝型油菜早熟性状QTL定位及候选基因筛选[J]. 作物学报, 2021, 47(4): 626-637. |
[14] | 张春, 赵小珍, 庞承珂, 彭门路, 王晓东, 陈锋, 张维, 陈松, 彭琦, 易斌, 孙程明, 张洁夫, 傅廷栋. 甘蓝型油菜千粒重全基因组关联分析[J]. 作物学报, 2021, 47(4): 650-659. |
[15] | 唐婧泉, 王南, 高界, 刘婷婷, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. 甘蓝型油菜SnRK基因家族生物信息学分析及其与种子含油量的关系[J]. 作物学报, 2021, 47(3): 416-426. |
|