欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (9): 1584-1589.doi: 10.3724/SP.J.1006.2009.01584

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

一个新的水稻花粉半不育性位点的定位分析

曾波1,李敏1,杨祖荣2,谭陈菊1,董华林1,余四斌1,*   

  1. 1华中农业大学植物科学技术学院,湖北武汉430070;2湖北省种子集团公司,湖北武汉430070
  • 收稿日期:2009-02-25 修回日期:2009-05-05 出版日期:2009-09-12 网络出版日期:2009-07-03
  • 通讯作者: 余四斌, E-mail: ysb@mail.hzau.edu.cn
  • 基金资助:

    本研究由国家高技术研究发展计划(863计划)项目(2006AA10Z151)和高等学校博士学科点专项科研基金(20050504001)资助。

Mapping of a Novel Semi-Sterile Pollen QTL in Rice

ZENG Bo1,LI Min1,YANG Zu-Yong2,TAN Chen-Ju1,DONG Hua-Lin1,YU Si-Bin1,*   

  1. 1College of Plant Science and Technology,Huazhong Agricultural University,Wuhan 430070,China;2Hubei Seed Group Company,Wuhan 430070,China
  • Received:2009-02-25 Revised:2009-05-05 Published:2009-09-12 Published online:2009-07-03
  • Contact: YU Si-Bin, E-mail: ysb@mail.hzau.edu.cn

摘要:

利用一套以籼稻珍汕97B为背景的粳稻日本晴染色体片段代换系,鉴定发现1半不育的代换系。全基因组基因型分析表明,该代换系仅含3个粳稻导入片段,而其他遗传背景与珍汕97B相同。在湖北武汉和海南分别种植其衍生的F2F3分离群体,采用单标记分析和区间作图法分析花粉育性和小穗育性的数量性状位点(QTL),结果表明,该代换系的半不育性是第2染色体上的粳稻导入片段引起的,该片段RM262~RM475区间存在1新的影响花粉育性的QTL,其贡献率为13.9%。研究结果将为进一步精细定位水稻育性QTL以及鉴定相关功能基因提供重要的试验基础。

关键词: 染色体片段代换系, 花粉不育性, QTL, 水稻

Abstract:

Hybrid sterility has been an obstacle in utilization of potential heterosis in inter-subspecific hybrids of indica and japonica.In order to understand the genetic basis of pollen sterility of indica-japonica hybrid, we identified a line (IL37) with semi-sterility from a set of chromosomal segment substitution lines, of which each contained a single or few substitution segments from a japonica variety Nipponbare in the genetic background of indica variety Zhenshan 97B. The graphical genotype analysis of the line (IL37) by using 160 polymorphic SSR revealed that there were three chromosomal segments from the japonica with the similar genetic background of Zhenshan 97B. Its derived F2 and F3 segregation populations were planted respectively in Wuhan and Hainan, and evaluated for quantitative trait loci (QTLs) conferring pollen fertility and spikelet fertility via single-marker analysis and interval mapping. One new QTL of pollen sterility was detected at the interval RM262–RM475 on chromosome 2, explaining the phenotypic variation of 13.9%. The results suggest that japonica substitution segment carrying the QTL is a major cause of the semi-sterility in IL37. Further fine mapping and identification of candidate genes in the QTL region would facilitate a better understanding of the genetic basis of pollen sterility in rice.

Key words: Chromosomal segment substitution line, Pollen semi-sterility, Quantitative trait loci, Rice(Oryza sativa L.)

[1] Sano Y. Rice Genetics. Manila: International Rice Research Institute, 1986. pp 109-118

[2] Kato S, Kosaka H, Hara S. On the affinity of rice varieties as shown by fertility of hybrid plants. Bulletin of Sciences of Faculty of Agriculture, Kyushu University, 1928, 3: 132-147

[3] Chaudhary R C, Virmani S S, Khush G S. Patterns of pollen abortion in some cytoplasmic-genetic male sterile lines of rice. Oryza, 1981, 18: 140-142

[4] Lu C G, Takabatake K, Ikehashi H. Identification of segregation distortion neutral alleles to improve pollen fertility of indica-japonica hybrids in rice (Oryza sativa L.). Euphytica, 2000, 113: 101-107

[5] Lu Q, Li X H, Guo D, Xu C G, Zhang Q. Localization of pms3, a gene for photoperiod-sensitive genic male sterility, to a 28.4-kb DNA fragment. Mol Gen Genomics, 2005, 273: 507-511

[6] Zhao Z G, Wang C M, Jiang L, Zhu S S, Ikehashi H, Wan J. Identification of a new hybrid sterility gene in rice (Oryza sativa L.). Euphytica, 2006, 151: 331-337

[7] Li D T, Chen L M, Jiang L, Zhu S S, Zhao Z G, Liu S J, Su N, Zhai H Q, Ikehashi H, Wan J M. Fine mapping of S32(t), a new gene causing hybrid embryo sac sterility in a Chinese landrace rice (Oryza sativa L.). Theor Appl Genet, 2007, 100: 697-712

[8] Yang-J(杨杰), Zhai H-Q(翟虎渠), Wang C-L(王才林), Zhong W-G(仲维功), Zou J-S(邹江石), Ikehashi H(池桥宏), Wan J-M(万建民). QTL analysis of low-temperature-sensitive pollen sterility in indica-japonica hybrid rice (Oryza sativa L.). Acta Genet Sin (遗传学报), 2005, 32(5): 507-513(in Chinese with English abstract)

[9] Hu F Y, Xu P, Deng X N, Zhou J W, Li J, Tao D Y. Molecular mapping of a pollen killer gene S29(t) in Oryza glaberrima and co-linear analysis with S22 in O. glumaepatula. Euphytica, 2006, 151: 273-278

[10] Li W, Zeng R, Zhang Z, Ding X, Zhang G. Identification and fine mapping of S-d, a new locus conferring the partial pollen sterility of intersubspecific F1 hybrids in rice (Oryza sativa L.). Theor Appl Genet, 2008, 116: 915-922

[11] Liu X, Wang S W, Wang Y, Wei S. Genetic analysis and molecular mapping of a nuclear recessive male sterility gene, ms91(t), in rice. Genome, 2007, 50: 796-801

[12] Li W C, Jiang L, Zhou S R, Wang C M, Liu L L, Chen L M, Ikehashi H, Wan J M. Fine mapping of pss1, a pollen semi-sterile gene in rice (Oryza sativa L.). Theor Appl Genet, 2007, 114: 939-946

[13] Jing W, Zhang W W, Jiang L, Chen L M, Zhai H Q, Wan J M. Two novel loci for pollen sterility in hybrids between the weedy strain Ludao and the japonica variety Akihikari of rice (Oryza sativa L.). Theor Appl Genet, 2007, 114: 915-925

[14] Chen J, Ding J, Ouyang Y, Du H, Yang J, Cheng K, Zhao J, Qiu S, Zhang X, Yao J, Liu K, Wang L, Xu C, Li X, Xue Y, Xia M, Ji Q, Lu J, Xu M, and Zhang Q. A triallelic system of S5 is a major regulator of the reproductive barrier and compatibility of indica-japonica hybrids in rice. Proc Natl Acad Sci USA, 2008, 105: 11436-11441

[15] Yu S-B(余四斌), Mu J-X(穆俊祥), Zhao S-J(赵胜杰), Zhou H-J(周红菊), Tan Y-B(谭友斌), Xu C-G(徐才国), Luo L-J(罗利军), Zhang Q-F(张启发). Development and selection of introgression lines with the identical genetic background of varieties Zhenshan 97B and 9311. Mol Plant Breed (分子植物育种), 2005, 3(5): 629-636 (in Chinese with English abstract)

[16] Li Z-B(李泽炳). A preliminary discussion about the classification of male sterile lines of rice in China. Acta Agron Sin (作物学报), 1980, 6(1): 17-26 (in Chinese)

[17] Rogers S O, Bendich A J. Extraction of DNA from Plant Tissue. Plant Mol Biol Manual, A6. Netherlands: Kluwer Academic Publishers, 1988.pp1210

[18] McCouch S, Teytelman L, Xu Y, Lobos K B, Clare K, Walton M, Fu B, Maghirang R, Li Z, Xing Y, Zhang Q, Kono I, Yano M, Fjellstrom R, DeClerck G, Schneider D, Cartinhour S, Ware D, Stein L. Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Res, 2002, 9: 199-207

[19] Lincoln S E, DaIy M J, Lander E S. Constructing Genetics Maps with MapMaker/EXP3.0. Whitehead Institute Technical Report. Cambridge: MA, 1992

[20] Brant J B, Gustavo C A, Peter M G. Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal Biochem, 1991, 196: 80-82

[21] StatSoft. Statistica. StatSoft Incorporated, Tusla, Oklahoma, 1997

[22] Wang D L, Zhu J, Li Z K, Paterson A H. Mapping QTLs with epistatic effects and QTL by environment interactions by mixed linear model approaches. Theor Appl Genet, 1999, 99: 1255-1264

[23] McCouch S R, Cho Y G, Yano M, Paul E, Blinstrub M, Morishima H, Kinoshita T. Report on QTL nomenclature. Rice Genet Newsl, 1997, 14: 11-13

[24] Ali A J, Xu J L, Ismail A M, Fu B Y, Vijaykumar C H M, Gao Y M, Domingo J, Maghirang R, Yu S B, Gregorio G, Yanaghihara S, Cohen M, Carmen B, Mackill D, Li Z K. Hidden diversity for abiotic and biotic stress tolerances in the primary gene pool of rice revealed by a large backcross breeding program. Field Crops Res, 2006, 97: 66-76

[25] Li H B, Wang J, Liu A M, Liu K D, Zhang Q, Zou J S. Genetic basis of low-temperature-sensitive sterility in indica-japonica hybrids of rice as determined by RFLP analysis. Theor Appl Genet, 1997, 95: 1092-1097

[26] Kubo T, Yoshimura A. Epistasis underlying female sterility detected in hybrid breakdown in an indica-japonica cross of rice (Oryza sativa L.). Theor Appl enet,2005, 110: 346-355

Long Y, Zhao L, Niu B, Su J, Wu H, Chen Y, Zhang Q, Guo J, Zhuang C, Mei M, Xia J, Wang L, Wu H, Liu Y. Hybrid male sterility in rice controlled by interaction between divergent alleles of two adjacent genes. Proc Natl Acad Sci USA, 2008, 105: 18871-18876

[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[7] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[8] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[9] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[10] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[11] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[12] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[13] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[14] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[15] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!