欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (9): 1590-1596.doi: 10.3724/SP.J.1006.2009.01590

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

优良大豆品种合丰25的遗传组成

关荣霞1,秦君2,胡静深3,陈为秀3,常汝镇1,刘章雄1,邱丽娟1,*   

  1. 1中国农业科学院作物科学研究所/高家农作物基因资源与基因改良重大科学工程/农业部作物种质资源利用重点开放实验室,北京100081;2河北农林科学院粮油作物研究所,河北石家庄050031;3东北农业大学,黑龙江哈尔滨 150030
  • 收稿日期:2009-01-08 修回日期:2009-04-26 出版日期:2009-09-12 网络出版日期:2009-07-03
  • 通讯作者: 邱丽娟, E-mail: qiu_lijuan@263.net; Tel: 010-82105843
  • 基金资助:

    本研究由国家高科技研究发展计划(863计划)项目(2006AA100104,2006AA10B1Z3,2006AA10Z1F1),国家自然科学基金项目(30490251,30671310),国家科技攻关项目(2006BAB13B05),国家重点基础研究发展计划(973计划)项目(2009CB118400)资助。

Genetic Composition of Elite Soybean Dultivar Hefeng 25

GUAN Rong-Xia1,QIN Jun2,HU Jing-Shen3,CHEN Wei-Xiu3,CHANG Ru-Zhen1,LIU Zhang-Xiong,QIU Li-Juan1   

  1. 1 National Key Facility for Crop Gene Resources and Genetic Improvement / Key Laboratory of Germplasm Utilization, Ministry of Agriculture / Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; 2 Hebei Academy of Agricultural and Forestry Science, Shijiazhuang 050031, China; 3 Northeast Agricultural University, Harbin 150030, China
  • Received:2009-01-08 Revised:2009-04-26 Published:2009-09-12 Published online:2009-07-03
  • Contact: QIU Li-Juan, E-mail: qiu_lijuan@263.net; Tel: 010-82105843

摘要:

合丰25由合丰23和克4430-20杂交选育而成,是我国大豆生产上累计种植面积最大的品种。本研究利用463SSR标记对合丰25及其亲本进行检测,并分析其遗传组成及其与亲本的遗传关系。463SSR位点中有177个位点在合丰25的两个亲本间无多态性,合丰23和克4430-20对合丰25的遗传贡献率分别为39.4%48.3%。在GE两个连锁群发现克4430-20有大片段传递给合丰25,特别是G连锁群没有发现来自合丰23的片段,而合丰23L连锁群传递给合丰25的位点是克4430-202.3倍。不同连锁群亲本染色体片段的组成不同,可能与产量、抗病性等重要性状相关QTL的分布有关,从而使合丰25通过重组集合了两个亲本的优点。合丰2557个位点出现新等位变异。为分析位点突变对合丰25纯度的影响,用包括57个位点在内的207SSR标记对12个不同销售点的合丰25种子进行检测,207SSR引物中有13对在4个大豆样本中检测到杂合条带,而8个样本的纯度均为100%。说明大部分突变位点已在品种利用过程中纯合,合丰25的优异基因型及其在推广20多年后仍保持的高纯度,是其在生产上利用经久不衰的主要原因之一。

关键词: 大豆, 合丰25, 系谱, SSR, 遗传组成

Abstract:

Elite soybean cultivar Hefeng 25, derived from a cross of Hefeng 23×Ke 4430-20, has an accumulated planting area of 13 million hectares and the longest planting history of soybean cultivars. The objective of this study is to evaluate the genetic composition of Hefeng 25 and the relationship of Hefeng 25 with the parents. Four hundred and sixty-three SSR markers were used to screen Hefeng 25 and its parents Hefeng 23 and Ke 4430-20. Of the 463 SSR markers 177 were monomorphic between Hefeng 23 and Ke 4430-20 and 57 loci were detected in Hefeng 25 with new alleles mutated not from the parents. The genetic contribution of Hefeng 23 and Ke 4430-20 to Hefeng 25 was 39.4% and 48.3%, respectively based on molecular information. Analysis of each linkage group revealed that large portions of loci on linkage groups G, E, and L were inherited entirely from one parent. Especially on linkage group G, all loci were inherited from Ke4430-20. The loci on linkage group L inherited from Hefeng 23 were 2.3 fold of that from Ke4430-20. Detailed analysis showed that QTLs for yield and disease resistance may relate to these loci. These analyses suggested that breeders may select recombination events with agronomic favorable alleles of two parents. In order to evaluate the effect of SSR mutation on soybean seed purity, we screened Hefeng 25 seed samples from 12 different seed companies at 207 SSR loci including 57 mutated loci. Hybrid alleles were observed only in 4 seed samples at 13 SSR loci. The result indicated that most of the mutated loci were purified during the breeding process. The elite genotype and high seed purity of Hefeng25 may be the most important factors for its long-term utilization in soybean production.

Key words: Soybean(Glycine max), Hefeng 25, Pedigree, SSR, Genetic composition

[1] Guo T(郭泰), Liu Z-T(刘忠堂), Qi N(齐宁), Zhang R-C(张荣昌), Hu X-P(胡喜平). Breeding and utilization of high-yield soybean Hefeng 25. Soybean Sci (大豆科学), 1997, 16(1): 85-87 (in Chinese)

[2] Guo T(郭泰), Liu Z-T(刘忠堂), Qi N(齐宁), Zhang R-C(张荣昌), Hu X-P(胡喜平), Wang Z-X(王志新). Utilization of Hefeng25 in soybean breeding. Crop Germplasm Resour (作物品种资源), 1998, (2): 19-20 (in Chinese)

[3] Liu C-H(刘长海), Yu X-C(于晓春), Qiu C-J(邱长久), Zhang A-H(张安宏), Cheng H-Y(成华玉), Hu S-Y(胡淑艳). Utilization of Hefeng 25 as parental material. Soybean Bull (大豆通报), 2001, (3): 22 (in Chinese)

[4] Qiu L-J(邱丽娟), Wang S-M(王曙明). Chinese soybean breeding lines (1993-2004), Beijing: China Agricultural Press, 2008 (in Chinese)

[5] Qiu F-L(邱福林), Shao G-J(邵国军), Li Y-D(李跃东), Han Y(韩勇). Parent selection and pedigree analysis of Liaojing 326. Reclaim Rice Cult (垦殖与稻作), 2001, (3): 3-5 (in Chinese)

[6] Qin J(秦君), Jiang C-X(姜成喜), Liu Z-X(刘章雄), Fu Y-S(付亚书), Guan R-X(关荣霞), Chen W-Y(陈维元), Li Y-H(李英惠), Zhang M-C(张孟臣), Jing Y-L(景玉良), Chang R-Z(常汝镇), Qiu L-J(邱丽娟). Genetic diversity and recombination of soybean cultivar Suinong 14 and its pedigree. Hereditas (遗传), 2006, 28(11): 1421-1427 (in Chinese with English abstract)

[7] Qin J(秦君), Chen W-Y(陈维元), Guan R-Y(关荣霞), Jiang C-X(姜成喜), Li Y-H(李英慧), Fu Y-S(付亚书), Liu Z-X(刘章雄), Zhang M-C(张孟臣), Chang R-Z(常汝镇), Qiu L-J(邱丽娟). Genetic contribution of foreign germplasm to elite Chinese soybean (Glycine max) cultivars revealed by SSR markers. Chin Sci Bull (科学通报), 2006, 51(6): 686-692(in Chinese)

[8] Guan R-X(关荣霞), Chang R-Z(常汝镇), Qiu L-J(邱丽娟). Rapid isolation of soybean DNA used for SSR analysis. Soybean Sci (大豆科学), 2003, 22(1): 73-74 (in Chinese with English abstract)

[9] Tasma I M, Lorenzen L L, Green D E, Shoemaker R C. Mapping genetic loci for flowering time, maturity, and photoperiod insensitivity in soybean. Mol Breed, 2001, 8: 25-35

[10] Funatsuki H, Kawaguchi K, Matsuba S,Sato Y, Ishimoto M. Mapping of QTL associated with chilling tolerance during reproductive growth in soybean. Theor Appl Genet, 2005, 142: 137-142

[11] Mansur L M, Orf J H, Chase K, Jarvik T, Cregan P B, Lark K G. Genetic mapping of agronomic traits using recombinant inbred lines of soybean. Crop Sci, 1996, 36: 1327-1336

[12] Lorenzen L L, Lin S F, Shoemaker R C. Soybean pedigree analysis using map-based molecular markers: Recombination during cultivar development. Theor Appl Genet, 1996, 93: 1251-1260

[13] Kimura M. A model of a genetic system which leads to closer linkage by natural selection. Evolution, 1956, 10: 278-287

[14] Nei M. Modification of linkage intensity by natural selection. Genetics, 1967, 57: 625-641

[15] Nei M. Evolutionary change of linkage intensity. Nature, 1968, 218: 1160-1161

[16] Song Q J, Marek L F, Shoemaker R C, Lark K G, Concibido V C, Delannay X, Specht J E, Cregan P B. A new genetic linkage map for soybean. Theor Appl Genet, 2004, 109: 122-128

[17] Ha B K, Bennett J B, Hussey R S, Finnerty S L, Boerma H R. Pedigree analysis of a major QTL conditioning soybean resistance to southern root-knot nematode. Crop Sci, 2004, 44: 758-763

[18] Ha B K, Hussey R S, Boerma H R. Development of SNP assays for marker-assisted selection of two southern root-knot nematode resistance QTL in soybean. Crop Sci, 2007, 47: 573-582

[19] Guo B, Sleper D A, Arrelli P R, Shannon J G, Nguyen H T. Identification of QTLs associated with resistance to soybean cyst nematode races 2, 3 and 5 in soybean PI 90763. Theor Appl Genet, 2005, 103: 1167-1173

[20] Cregan P B, Mudge J, Fickus E W, Danesh D, Denny R, Young N D. Two simple sequence repeat markers to select for soybean cyst nematode resistance conditioned by the rhg1 locus. Theor Appl Genet, 1999, 99: 811-818


[21] Mudge J, Cregan P B, Kenworthy J P, Kenworthy W J,

Orf J H, Young N D. Two microsatellite markers that flank the major soybean cyst nematode resistance locus. Crop Sci, 1997, 37: 1611-1615

[22] Yue P, Arrelli P R, Sleper D A. Molecular characterization of resistance to Heterodera glycines in soybean PI 438489B. Theor Appl Genet, 2001, 102: 921-928

[23] Li Z, Jakkula L, Hussey R S, Tamulonis J P, Boerma H R. SSR mapping and confirmation of the QTL from PI96354 conditioning soybean resistance to southern root-knot nematode. Theor Appl Genet, 2001, 103: 1167-1173

[24] Panthee D R, Pantalone V R, Sams C E, Saxton A M, West D R, Rayford W E. Genomic regions governing soybean seed nitrogen accumulation. J Am Oil Chem Soc, 2004, 81: 77-81

[25] Specht J E, Chase K, Macrander M, Graef G L, Chung J, Markwell J P, Germann M, Orf J H, Lark K G. Soybean response to water: A QTL analysis of drought tolerance. Crop Sci, 2001, 41: 493-509

[26] Liu G-Y(刘广阳). Utilization of elite germplasm Ke4430-20 in soybean breeding in Heilongjiang province. J Plant Genet Resour (植物遗传资源学报), 2005, 6(3): 326-329 (in Chinese with English abstract)

[27] Wang D, Graef G L, Procopiuk A M,Diers B W. Identification of putative QTL that underlie yield in interspecific soybean backcross populations. Theor Appl Genet, 2003, 108: 458-467

[28] Arahana V S, Graef G L, Specht G E, Steadman J R, Eskridge K M. Identification of QTLs for resistance to sclerotinia sclerotiorum in soybean. Crop Sci, 2001, 41: 180-188

[29] Naoki Y, Seishi N, Masako N, Yasutaka T, Masahiro Y, Yashiaki N, Takuji S, Kyuya H. An informative linkage map of soybean reveals QTLs for flowering time, leaflet morphology and regions of segregation distortion. DNA Res, 2001, 8: 61-72

[30] Pahthee D R, Kwanyuen P, Sams C E, West D R, Saxton A M,Pantalone V R.Quantitative trait loci for β-Conglycinin (7S) and glycinin (11S) fractions of soybean storage protein. J Am Oil Chem Soc, 2004, 81: 1005-1012

[31] Orf G H, Chase K, Jarvik T, Mansur L M, Cregan P B, Adler F R, Lark K G. Genetics of soybean agronomic traits: I. Comparison of three related recombinant inbred populations. Crop Sci, 1999, 39: 1642-1651

[32] Romero-Severson J, Smith J S C, Ziegle J, Hauser J, Joe L, Hookstra G. Pedigree analysis and haplotype sharing within diverse groups of Zea mays L. inbreds. Theor Appl Genet, 2001, 103: 567-574

[33] Guan R-X(关荣霞), Liu Y(刘燕), Liu Z-X(刘章雄), Chang R-Z(常汝镇), Qiu L-J(邱丽娟). Purity identification of soybean varieties with SSR technique. Mole Plant Breed (分子植物育种), 2003, 1(3): 357-360 (in Chinese with English abstract)

[34] Meesang N. Ranamukhaarachchi S L, Petersen M J, Andersen S B. Soybean cultivar identification and genetic purity analysis using microsatellite DNA markers. Seed Sci Technol, 2001, 29: 637-645
[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[3] 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557.
[4] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[5] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[6] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209.
[7] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[8] 陈小红, 林元香, 王倩, 丁敏, 王海岗, 陈凌, 高志军, 王瑞云, 乔治军. 基于高基元SSR构建黍稷种质资源的分子身份证[J]. 作物学报, 2022, 48(4): 908-919.
[9] 张霞, 于卓, 金兴红, 于肖夏, 李景伟, 李佳奇. 马铃薯SSR引物的开发、特征分析及在彩色马铃薯材料中的扩增研究[J]. 作物学报, 2022, 48(4): 920-929.
[10] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[11] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[12] 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596.
[13] 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643.
[14] 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366.
[15] 张国伟, 李凯, 李思嘉, 王晓婧, 杨长琴, 刘瑞显. 减库对大豆叶片碳代谢的影响[J]. 作物学报, 2022, 48(2): 529-537.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!