欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (10): 1942-1947.doi: 10.3724/SP.J.1006.2009.01942

• 研究简报 • 上一篇    

大豆脂肪酸合成关键酶基因的电子定位及结构分析

宋万坤1,2,朱命喜2,赵阳林1,王晶2,李文福2,刘春燕1,2,陈庆山2,*,胡国华1,3,*   

  1. 1黑龙江省农垦科研育种中心,黑龙江哈尔滨150090;2东北农业大学农学院,黑龙江哈尔滨150030;3高家大豆工程技术研究中心,黑龙江哈尔滨150050
  • 收稿日期:2009-01-15 修回日期:2009-04-26 出版日期:2009-10-12 网络出版日期:2009-07-04
  • 通讯作者: 胡国华, E-mail: hugh757@vip.163.com; 陈庆山, E-mail: qshchen@126.com; Tel: 0451-55191945
  • 基金资助:

    本研究由农业部引进国际先进农业科学技术计划(948计划)项目【2006-G1(A)】,国家高技术研究发展计划(863计划)项目(2006AA10Z1F4),黑龙江省博士后科研启动基金(LHK-04014)资助。

In silico Mapping and Structure Analysis of Key Enzyme Genesis in Fatty Acid Synthesis of Soybean

SONG Wan-Kun1,2,ZHU Ming-Xi1,2,ZHAO Yang-Lin1,WANG Jing1,LI Wen-Fu1,LIU Chun-Yan1,2,CHEN Qing-Shan2,*,HU Guo-Hua1,3,*   

  1. 1The Crop Research and Breeding Center of Land-Reclamation,Harbin 150090,China;2Agriculture College,Northeast Agricultural University,Harbin 150030,China;3The National Research Center of Soybean Engineering and Technology,Harbin 150050,China
  • Received:2009-01-15 Revised:2009-04-26 Published:2009-10-12 Published online:2009-07-04
  • Contact: HU Guo-hua,E-mail:hugh757@vip.163.com;CHEN Qing-Shan,E-mail:qshchen@126.com;Tel:0451-55191945

摘要:

利用最新大豆遗传图与物理图的整合图谱,对12个大豆脂肪酸合成中乙酰辅酶A羧化酶、脂肪酸合酶等关键酶基因进行基因定位与结构分析。它们分别被定位在A2B2C2D1bD2GILM9个连锁群上,并通过序列比对获得了所在相应连锁群区间两侧标记。同时,比较基因的cDNAgDNA序列信息,获得了这12个基因结构信息,内含子数目从最少的0到最多的30个,其中FAD2-1FAD2-2FAD2-3FatB是单外显子基因,没有内含子;其余基因都有内含子,KASI6个,KASII12个,SACPD2个,FAD37个。通过定位获得对应分子标记可以为基因的分子辅助育种提供参考资料,而基因结构信息能更好地用于基因的功能分析。

关键词: 大豆, 脂肪酸, 基因, 电子定位, 基因结构

Abstract:

The 12 genes of key enzyme such as acyl-CoA carboxylase and fatty acid synthase in fatty acid synthesis were mapped on the newest genetic map integrating from physical map and genetic map, and the gene structure was analyzed. They were mapped on nine linkage groups, including A2, B2, C2, D1b, D2, G, I, L, M, and the flank markers of the gene on the linkage groups were obtained. At the same time, we compared the sequence information of cDNA with gDNA to get the structure information of the 12 genes, with the number of intron from 0 to 30. FAD2-1, FAD2-2, FAD2-3, and FatB were all single extron gene, but there were six introns in KASI, twelve introns in KASII, two introns in SACPD, and seven introns in FAD3. So the corresponding markers obtained from the mapping are available for molecular assisted selection, while the structure information can be better used in gene function analysis.

Key words: Soybean, Fatty acid, Gene, In silico mapping, Gene structure

[1] Lackey J A. Chromosome numbers in the Phaseoleae and their relation to taxonomy. Am J Bot, 1980, 67: 595-602

[2] Ohlrogge J, Browse J. Lipid biosynthesis. Plant Cell, 1995,7: 957-970

[3] Nikolau B J, Ohlrogge J B, Wurtele E S. Plant biotin-containing carboxylases. Arch Biochem Biophys, 2003, 414: 211-222

[4] Somerville C, Browse J, Jaworski J G, Ohlrogge J. Biochemistry and Molecular Biology of Plants. Amer. Soc. of Plant Physiologists, Rockville, MD, 2000, pp 456-527

[5] Anderson J V, Lutz S M, Gengenbach B G, Gronwald J W. Genomic sequence for a nuclear gene encoding acetyl-coenzyme A carboxylase (accession No. L42814) in soybean (95-055). Plant Physiol, 1995, 109: 338

[6] Aghoram K, Wilson R F, Burton J W, Dewey R E. A mutation in a 3-keto-acyl-ACP synthase II gene is associated with elevated palmitic acid levels in soybean seeds. Crop Sci, 2006, 46: 2453-2459

[7] Dehesh K, Tai H, Edwards P, Byrne J, Jaworski J G. Overexpression of 3-ketoacyl-acyl-carrier protein synthase IIIs in plants reduces the rate oflipid synthesis. Plant Physiol, 2001, 125: 1103-1114

[8] Cardinal A J, Burton J W, Camacho-Roger A M, Yang J H, Wilson R F, Dewey R E. Molecular analysis of soybean lines with low palmitic acid content in the seed oil. Crop Sci, 2007, 47: 304-310

[9] Chen L, Moon Y, Shanklin J, Nikolau B, Atherly A G. Cloning and sequence of a cDNA encoding stearoyl-acyl carrierprotein desaturase from Glycine Max. Plant Physiol, 1994, 109: 1498

[10] Heppard E P, Kinney A J, Stecca K L, Miao G H. Developmental and growth temperature regulation of two different microsomal omega-6 desaturase genes in soybeans. Plant Physiol, 1996, 110: 311-319

[11] Byfield G E, Upchurch R G.Effect of temperature on delta-9 stearoyl-ACP and microsomal omega-6 desaturase geneexpression and fatty acid content in developing soybean seeds. Crop Sci, 2007, 47: 1698-1704

[12] Bilyeu K D, Palavalli L, Sleper D A, Beuselinck P R. Three microsomal omega-3-fatty acid desaturase genes contribute to soybean linolenic acid levels. Crop Sci, 2003, 43: 1833-1838

[13] Choi I Y, Hyten D L, Matukumalli L K, Song Q J, Chaky J M, Quigley C V, Chase K K, Lark G, Reiter R S, Yoon M S, Hwang E Y, Yi S I, Young N D, Shoemaker R C, van Tassell C P, Specht J E, Cregan P B. A soybean transcript map: Gene distribution, haplotype and single-nucleotide polymorphism analysis. Genet Soc Am, 2007, 176: 685-696

[14] Qi Z M, Li H, Wu Q, Sun Y N, Liu C Y, Hu G H, Chen Q S. An integrated map of soybean physical map and genetic map. J Northeast Agric Univ, 2009, 16(2): 12-16

[15] Zheng Y-Z(郑永战), Gai J-Y(盖钧镒), Lu W-G(卢为国), Li W-D(李卫东), Zhou R-B(周瑞宝), Tian S-J(田少君). QTL mapping for fat and fatty acid composition contents in soybean. Acta Agron Sin (作物学报), 2006, 32(12): 1823-1830(in Chinese with English abstract)

[16] Song Q J, Marek L F, Shoemaker R C, Lark K G, Concibido V C, Delannay X, Specht J E, Cregan P B. A new integrated genetic linkage map of the soybean. Theor Appl Genet, 2004, 109: 122-128

[17] Yu Y G, Saghai-Maroof M A, Buss G R, Maughan P J, Tolin S A. RFLP and microsatellite mapping of a gene for soybean mosaic virus resistance. Phytopathology, 1994, 84: 60-64

[18] Mansur L M, Lark K G, Kross H, Oliveira A. Interval mapping of quantitative trait loci for reproductive, morphological and seed traits of soybean (Glycine max L.). Theor Appl Genet, 1993, 86: 907-913
Conclbido V C, Denny R L, Boutin S R, Hautea R, Orf J H, Young N D. DNA marker analysis of loci underlying resistance to soybean cyst nematode (Heterodera glycine Ichinohe). Crop Sci, 1994, 34: 240-246
[1] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[2] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[3] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[4] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[5] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[6] 王靖天, 张亚雯, 杜应雯, 任文龙, 李宏福, 孙文献, 葛超, 章元明. 数量性状主基因+多基因混合遗传分析R软件包SEA v2.0[J]. 作物学报, 2022, 48(6): 1416-1424.
[7] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[8] 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557.
[9] 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565.
[10] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[11] 邓钊, 江南, 符辰建, 严天泽, 符星学, 胡小淳, 秦鹏, 刘珊珊, 王凯, 杨远柱. 隆两优与晶两优系列杂交稻的稻瘟病抗性基因分析[J]. 作物学报, 2022, 48(5): 1071-1080.
[12] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[13] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[14] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[15] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!