欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (11): 1973-1980.doi: 10.3724/SP.J.1006.2009.01973

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

花生中DREB类转录因子PNDREB1的克隆及鉴定

张梅1,2,3,刘炜1,2,*,毕玉平1,2,3,王自章4   

  1. 1山东省农业科学院高新技术研究中心/山东省作物与畜禽品种改良生物技术重点实验室,山东济南250100;2农业部黄淮海作物遗传改良与种质创新重点实验室;山东济南250100;3山东师范大学生命科学学院,山东济南250014;4中国科学院植物研究所,北京100093
  • 收稿日期:2009-05-19 修回日期:2009-08-06 出版日期:2009-11-12 网络出版日期:2009-09-07
  • 通讯作者: 刘炜, Email: wheiliu@163.com; Tel: 0531-83179572
  • 基金资助:

    本研究由山东省农科院博士基金项目(2007YBS008)资助。

Isolation and Identification of pndreb1-A New DREB Transcription Factor from Peanut(Arachis hypogaea L.)

ZHANG Mei1,2,3,LIU Wei1,2,*,BI Yu-Ping1,2,3,WANG Zi-Zhang4   

  1. 1Hi-Tech Research Center,Shandong Academy of Agricultural Sciences/Key Laboratory for Genetic Improvement of Crop,Animal and Poultry of Shandong Province,Jinan 250100,China;2Key Laboratory of Crop Genetic Improvement and Biotechnology,Huanghuaihai,Ministry of Agriculture,Jinan 250100,China;3College of Life Sciences,Shandong Normal University,Jinan 250014,China;4Institute of Botany,Chinese Academy of Sciences,Beijing 100093,China
  • Received:2009-05-19 Revised:2009-08-06 Published:2009-11-12 Published online:2009-09-07
  • Contact: LIU Wei, Email: wheiliu@163.com; Tel: 0531-83179572

摘要:

脱水响应元件结合因子(DREB)是一类对多个抗逆相关基因表达起调控作用的植物特有的转录因子,在植物抗逆能力综合改良方面具有重要作用。本研究通过筛选花生未成熟种子的cDNA文库,分离到一个DREB类基因——PNDREB1(FM955398)。该基因序列长度为687 bp,推测编码蛋白含有229个氨基酸残基,相对分子量为24.7 kD,理论等电点为5.97,与其他物种中该类转录因子序列同源性较高。利用酵母单杂交系统,对花生PNDREB1DRE元件的特异识别和结合能力及其C-末端转录激活活性进行检测,显示,转入含有该基因及阳性对照基因的载体均可使酵母菌株正常生长,且具有显色反应,而转入空载体的酵母菌株不能生长,证明基因PNDREB1中的AP2结构域具有和DRE元件特异性结合的能力;同时,只有转入含有该基因C-末端片段及阳性对照基因的载体可使酵母菌株正常生长,并具有显色反应,而转入空载体的酵母菌株不能生长,说明其C-末端片段具有转录激活活性,该基因为DREB类转录因子。基因表达模式分析显示,PNDREB1为组成型表达,且被低温强烈、迅速诱导表达,并对干旱胁迫也有一定程度的响应,但对高盐和ABA处理没有响应。

关键词: 花生, DREB转录因子, PNDREB1, 酵母杂交, 表达模式, 低温, 干旱

Abstract:

The dehydration responsive element binding proteins (DREB) are important and specific plant transcription factors responding to stress conditions including drought, salt and low temperature.It has been generally accepted that DREB can regulates the expression of a number of abiotic stress-related genes in down stream of the stress signal transduction pathways. In this paper, a DREB-like gene, named PNDREB1 (Accession No. FM955398), was cloned by screening a peanut (Arachis hypogaea L.) full-length cDNA library of immature seeds. The structure analysis showed that PNDREB1 contained a 687 bp ORF, encoding a protein of 229 amino acids with predicted molecular weight of 24.7 kD and a isoelectric point of 5.97. The predicted protein sequence contained one conserved AP2 domain, which is the typical characteristic of DREB transcription factors. Based on the sequences similarity, PNDREB1 is classified into A-1 subgroup of DREB subfamily. Furthermore, the yeast hybrid system was carried out, and the results confirmed that the AP2 domain of PNDREB1 could specifically interact with DRE cis-acting element. The activation activity of the C-terminal end as a transcriptional activator was also been proved experimentally. The expression pattern analysis carried out by semi-quantitative RT-PCR indicated that PNDREB1 was constitutively expressed in various tissues of peanut, and was strongly upregulate by treatments with low temperature, also respond to dehydration. However, the expression of PNDREB1 was not affected by high salinity and exogenous application of abscisic acid (ABA). In this study, we isolated and characterized a novel peanut DREB-like transcription factor which was regulated by low temperature and osmotic stresses.

Key words: Peanut, DREB Transcription factor, PNDREB1, Yeast hybrid system, Expression pattern, Low temperature, Dehydration

[1] Okamuro J K, Caster B, Villarroel R. The AP2 domain of APETALA2 define a large new family of DNA binding protein in Arabidopsis. Proc Natl Acad Sci USA, 1997, 94: 7076-7081

[2] Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell, 1998, 10: 1391-1406

[3] Yamaguchi-Shinozakiaib K, Shinozaki K. A Novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low temperature, or high-salt stress. Plant Cell, 1994, 6: 251-264

[4] Stockinger E J, Gilmour S J, Thomashow M F. Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci USA, 1997, 94: 1035-1040
[5] Zhang M(张梅), Liu W(刘炜), Bi Y-P(毕玉平). Dehydration-responsive element-binding (DREB) transcription factor in plants and its role during abiotic stresses. Hereditas(遗传), 2009, 31(3): 236-244(in Chinese with English abstract)

[6] Hsieh T S, Lee J T, Yang P T, Chiu L H, Charng Y Y, Wang Y C, Chan M T. Heterology expression of the Arabidopsis C-repeat/dehydration response element binding factor1 gene confers elevated tolerance to chilling and oxidative stresses in transgenic tomato. Plant Physiol, 2002, 129: 1086-1094

[7] Dubouzet J G, Sakuma Y, Ito Y, Kasuga M, Dubouzet E G, Miura S, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J, 2003, 33: 751-763

[8] Sakuma Y, Maruyama K, Qin F, Osakabe Y, Shinozaki K, Yamaguchi-Shinozaki K. Dual function of an Arabidopsis transcription factor DREB2A in water-stress-responsive and heat-stress-responsive gene expression. Proc Natl Acad Sci USA, 2006, 103: 18822-18827
[9] Sun S, Yu J P, Chen F, Zhao T J, Fang X H, Li Y Q, Sui S F. Tiny, a DREB-like transcription factor connecting the DRE- and ERE-mediated signaling pathways in Arabidopsis. J Biol Chem., 2008, 283: 6261-6271
[10] Carra A, Gambino G, Schubert A. A cetyltrimethylammonium bromide-based method to extract low-molecular-weight RNA from polysaccharide-rich plant tissues. Anal Biochem, 2007, 360: 318-320

[11] Chen Y-Q(陈由强), Ye B-Y(叶冰莹), Zhu J-M(朱锦懋), Zhuang W-J(庄伟建), Pan D-R(潘大仁), Chen R-K(陈如凯). A simple and modified procedure to isolate total DNA from leaves of peanut (Arachis hypogaea). Peanut Sci Technol(花生科技), 1999, (3): 1-4 (in Chinese with English abstract)
[12] Wang P-R(王平荣), Deng X-J(邓晓建), Gao X-L(高晓玲), Chen J(陈静), Wan J(万佳), Jiang H(姜华), Xu Z-J(徐正君). Progress in the study on DREB transcription factor. Hereditas (遗传), 2006, 28(3): 369-374 (in Chinese with English abstract)
[13] Sakuma Y, Liu Q, Dubouzet J G, Abe H, Shinozaki K, Yamaguchi-Shinozaki K. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochem Biophys Res Commun, 2002, 290: 998-1009
[14] Li J J, Herskowitz I. Isolation of ORC6, a component of the yeast origin recognition complex by a one hybrid system. Science, 1993, 262: 1870-1874

[15] Hu Z-L(胡振林), Sun S-H(孙树汉), Da J-X(戴建新), Zhou F-J(周凤娟). Screening out CpG immunostimulatory sequence-specific DNA-binding proteins with yeast-one-hybrid system. Acad J Second Military Med Univ (第二军医大学学报), 200l, 22(6): 542-545(in Chinese with English abstract)

[16] Jaglo K R, Kleff S, Amundsen K L, Zhang X, Haake V, Zhang J Z, Deits T, Thomashow M F. Components of the Arabidopsis C-repeat/dehydration-responsive element binding factor cold-response pathway are conserved in Brassica napus and other plant species. Plant Physiol, 2001, 127: 910-917
[17] Chen M, Wang Q Y, Cheng X G, Xu Z S, Li L C, Ye X G, Xia L Q, Ma Y Z. GmDREB2, a soybean DRE-binding transcription factor, conferred drought and high-salt tolerance in transgenic plants. Biochem Biophys Res Commun,2007, 353: 299-305
[1] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[2] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[3] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[4] 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565.
[5] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[6] 王霞, 尹晓雨, 于晓明, 刘晓丹. 干旱锻炼对B73自交后代当代干旱胁迫记忆基因表达及其启动子区DNA甲基化的影响[J]. 作物学报, 2022, 48(5): 1191-1198.
[7] 刘嘉欣, 兰玉, 徐倩玉, 李红叶, 周新宇, 赵璇, 甘毅, 刘宏波, 郑月萍, 詹仪花, 张刚, 郑志富. 耐三唑并嘧啶类除草剂花生种质创制与鉴定[J]. 作物学报, 2022, 48(4): 1027-1034.
[8] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[9] 冯亚, 朱熙, 罗红玉, 李世贵, 张宁, 司怀军. 马铃薯StMAPK4响应低温胁迫的功能解析[J]. 作物学报, 2022, 48(4): 896-907.
[10] 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607.
[11] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
[12] 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738.
[13] 黄莉, 陈玉宁, 罗怀勇, 周小静, 刘念, 陈伟刚, 雷永, 廖伯寿, 姜慧芳. 花生种子大小相关性状QTL定位研究进展[J]. 作物学报, 2022, 48(2): 280-291.
[14] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[15] 余慧芳, 张卫娜, 康益晨, 范艳玲, 杨昕宇, 石铭福, 张茹艳, 张俊莲, 秦舒浩. 马铃薯CrRLK1Ls基因家族的鉴定及响应晚疫病菌信号的表达分析[J]. 作物学报, 2022, 48(1): 249-258.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!