欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (1): 101-108.doi: 10.3724/SP.J.1006.2010.00101

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

苎麻Actinl基因克隆及其在韧皮部纤维不同发育阶段的表达

马雄风1,2,喻春明1,唐守伟1,朱爱国1,王延周1,朱四元1,刘建新1,熊和平1*   

  1. 1中国农业科学院麻类研究所/农业部麻类遗传改良与工程微生物重点开放实验室,湖南长沙410205;2中国农业科学院棉花所,河南安阳455000
  • 收稿日期:2009-03-23 修回日期:2009-07-24 出版日期:2010-01-12 网络出版日期:2009-10-13
  • 通讯作者: 熊和平,E-mail:ramiexhp@2118.cn;Tel:0731-8998500
  • 基金资助:

    本研究由国家“十一五”支撑计划项目(2006BAD06B03)和国家公益性行业(农业)科研专项经费项目(nyhyzx07-018)资助。

Cloning and Tissue Expression of Acting1 Gene in Different Fiber Development Phases of Ramie [Boehmeria nivea (Linn.) Gaud]

MA Xiong-Feng1,2,YU Chun-Ming1,TANG Shou-Wei1,ZHU Ai-Guo1,WANG Yan-Zhou1,ZHU Si-Yuan1,LIU Jian-Xin1,XIONG He-Ping1*   

  1. 1Institute of Bast Fiber Crops,Chinese Academy of Agricultural Sciences/Key Laboratory of Genetic Improvement & Engineering Microbiology for Bast Fiber Crops,Changsha 420105,China;2Institute of Cotton Research,Chinese Academy of Agricultural Sciences,Anyang 455000,China
  • Received:2009-03-23 Revised:2009-07-24 Published:2010-01-12 Published online:2009-10-13
  • Contact: XIONG He-Ping,E-mail:ramiexhp@2118.cn;Tel:0731-8998500

摘要:

通过cDNA文库的PCR筛选法获得苎麻内源肌动蛋白基因片段,采用苎麻[Boehmeria nivea (L.) Gaud]中苎1号为材料,结合RACE技术获得了苎麻的Actin1蛋白编码基因(BnACTIN1)cDNA全长序列(GenBank登录号DQ665832200981日公布), 该基因全长cDNA序列1 782 bp,编码区长1 134 bp,编码377个氨基酸残基。Blastn分析表明,BnACTIN1基因与桑树(Morus alba: DQ785808)、蓖麻子(Ricinus communis: AY360221)、棉花(Gossypium hirsutum: AY305723-305736)等植物的肌动蛋白基因序列有高度的同源性。对推导的氨基酸序列进行分子进化分析表明,该基因与棉花Actin蛋白家族AAP73451.1AAP73457.1聚为一类,三者之间的亲源关系最近。建立荧光定量PCR体系,用18S rRNAHistone3内参基因对表达水平均一化,分析BnACTIN1基因在苎麻纤维细胞伸长过程中的表达水平变化。结果表明,在株高97 cm时最高,约为株高11150220 cm时表达量的230倍以上,是株高47 cm时期的20倍。本研究揭示的所获得BnACTIN1序列为苎麻的Actin1蛋白编码基因,其最高表达时期开始于纤维快速伸长时期,但稍早于纤维发育的高峰期,推测该基因可能与韧皮部纤维伸长过程中的肌细胞骨架形成有关。

关键词: 苎麻, 肌动蛋白, 基因克隆, 实时定量PCR

Abstract:

Ramie [Boehmeria nivea (L.) Gaud] is an important natural fiber crop, and its quality improvement is a challenge for ramie breeders in breeding program. Plant fiber development is a complex process, which involves many genes and enzymes. Actin protein cytoskeleton plays a significant role in cytomorphology including cell elongation of ramie fiber. It is promising for ramie quality improvement by purposely regulating Actin gene expression with gene engineering technique. In the present study, the full-length cDNA sequence of Actin1 gene from ramie cultivar Zhongzhu 1 was cloned (GenBank accession number: DQ665832) by usingdegenerate primer RT-PCR method, RACE technology and screening with a full-length cDNA library. The full-length cDNA was composed of 1 782 bp sequences including an open reading frame (ORF) of 1 134 bp region which encoded 377 amino acids. Bioinformatic analysis showed that the conserved motifsof Actin1gene contained six ATP binding sites, six profilin binding sites and nine gelsolin binding sites. The cDNA sequence of Actin1 shared high sequence homology with that from other crops previously reported, which was close to that from Morus alba (GenBank accession number: DQ785808), Ricinus communis (AY360221) and Gossypium hirsutum (AY305723-305736). Gene sequence analysis showed that the putative amino acid sequence and Gossypium hirsutum Actin (AAP73451.1, AAP73457.1) were gathered to a same group. Degenerate primer RT-PCR method was used to clone18S rRNA and Histone3 genes and establish the fluorescence quantitative PCR system. The system was used to study the expression of Actin1 gene in different fiber development phases by using 18S rRNA and Histone3 genes as inner references. The results showed that Actin1 could express in all kinds of ramie fiber development phases, and the mRNA was 230 times higher in 97 cm of plant height than 11, 150 and 220 cm, 20 times higher than in 47 cm. The BnACTIN1 gene expression increased slowly in 11 to 47 cm of plant height, the peak in the plant height from 47 to 97 cm, in then rapidly declined in 150 cm of plant height, and kept the lowest level till the plant height was up to 220 cm. The high expression of BnACTIN1 gene presented at the beginning of the rapid elongation of the fiber cell, but slightly earlier than the peak period of fiber development. We speculated that ramie actin cytoskeleton plays a important role in the process of phloem fiber elongation.

Key words: Ramie, Actin protein, Gene cloning, Real-time quantitative PCR

 [1] Meagher R B, McKinney E C, Kandasamy M K. Isovariant dynamics expand and buffer the responses of complex systems: The diverse plant Actin gene family. Plant Cell, 1999, 11: 995-1006

[2] Yan L-F(阎隆飞), Liu D-Q(石德权). The presence of a contractile protein in higher plants. Acta Biochim Biophys Sin (生物化学与生物物理学报), 1963, 3(4): 490-495 (in Chinese)

[3] Kost B, Mathur J, Chua N H. Cytoskeleton in plant development. Curr Opin Plant Biol, 1999, 2: 462-470

[4] Zhang S-B(张少斌), Liu G-Q(刘国琴). Research advances in plant actin isoforms. Chin Bull Bot (植物学通报), 2006, 23(3): 242-248 (in Chinese with English abstract)

[5] Hussey P JKetelaar T, Deeks M J. Control of the actin cytoskeleton in plant cell growth. Annu Rev Plant Biol, 2006, 57: 109-25

 

[6] Li X B, Fan X P, Wang X L, Cai L, Yang W C. The cotton ACTIN1 gene is functionally expressed in fibers and participates in fiber elongation. Plant Cell, 2005, 17: 859-875

[7] Liu J-X(刘建新), Yu C-M(喻春明), Tang S-W(唐守伟), Zhu A-G(朱爱国), Wang Y-Z(王延周), Zhu S-Y(朱四元), Ma X-F(马雄风), Xiong H-P(熊和平). Cloning and tissue expression of important enzymegene UG1cAE in ramie pectin biosynthesis. Acta Agron Sin (作物学报), 2008, 37(11): 1938-1945 (in Chinese with English abstract)

[8] Lu G-D(鲁国东), Wang Z-H(王宗华), Zheng X-Q(郑学勤), Xie H-L(谢联辉). Gene isolated by using a new method based on DNA library and PCR technique. J Agric Biotechnol (农业生物技术学报), 1998, 6(3): 51-56 (in Chinese with English abstract)

[9] Tu L, Zhang X, Liu D, Jin S, Cao J, Zhu L, Deng F, Tan J, Zhang C. Suitable internal control genes for qRT-PCR normalization in cotton fiber development and somaticembryogenesis. Chin Sci Bull, 2007, 52: 3110-3117

[10] Zhang Y(张鋆). Elementary study of real-time PCR technique. Trends Life Sci (生命科学趋势), 2003, 1(4): 1-28 (in Chinese with English abstract)

[11] Kost B, Chua N H. The plant cytoskeleton: Vacuoles and cell walls make the difference. Cell, 2002, 108: 9-12

[12] Mathur J, Hülskamp M. Microtubules and microfilaments in cell morphogenesis in higher plants. Curr Biol, 2002, 12: 669-676

[13] Mathur J, Spielhofer P, Kost B, Chua N H. The actin cytoskeleton is required to elaborate and maintain spatial patternin during trichome cell morphogenesis in Arabidopsis thaliana. Development, 1999, 126: 5559-5568

[14] Ringli C, Baumberger N, Diet A, Frey B, Keller B. Gene specific changes in ACTIN2 is essential for bulge site selection and tip growth during root hair development of Arabidopsis. Plant Physiol, 2002, 129: 1464-1472

[15] Clarke S R, Staiger C J, Gibbon B C, Franklin-Tong V E. A potential signaling role for profilin in pollen of Papaver rhoeas. Plant Cell, 1998, 10: 967-979

[16] Baluska F, Salaj J, Mathur J, Braun M, Jasper F, Samaj J, Chua N H, Barlow P W, Wolkmann D. Root hair formation: F-actin-dependent tip growth is initiated by local assembly oprofilin-supported F-actin meshworks accumulated within expansin enriched bulges. Dev Biol, 2002, 227: 618-632

[17] Chen C Y, Wong E I, Vidalli L, Estavillo A, Hepler P K, Wu H, Cheung A Y. The regulation of actin organization by actin depolymerizing factor in elongating pollen tubes. Plant Cell, 2002, 14: 2175-2190

[18] Dong C H, Xia G X, Yang H, Ramachandran S, Kost B, Chua N H. ADF proteins are involved in the control of flowering and regulate F-actin organization, cell expansion, and organ growth in Arabidopsis. Plant Cell, 2001, 13: 1333-1346

[19] Miller D D, de Ruijter N C A, Bisseling T, Emons A M C. The role of actin in root hair morphogenesis: Studies with lipochito-oligosaccharide as a growth stimulator and cytochalasin as an actin perturbing drug. Plant J, 1999, 17: 141-154

[20] Gilliland L U, Kandasamy M K, Pawloski L C, Meagher R B. Both vegetative and reproductive actin isovariants complement the stunted root hair phenotype of the Arabidopsis act 2-1 mutation. Plant Physiol, 2002, 130: 2199-2209

[21] Gilliland L U, Pawloski L C, Kandasamy M K, Meagher R B. Arabidopsis actin gene ACT7 plays an essential role in germination and root growth. Plant J, 2003, 33: 319-328


 
[1] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[2] 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026.
[3] 谢琴琴, 左同鸿, 胡燈科, 刘倩莹, 张以忠, 张贺翠, 曾文艺, 袁崇墨, 朱利泉. 甘蓝自交不亲和相关基因BoPUB9的克隆及表达分析[J]. 作物学报, 2022, 48(1): 108-120.
[4] 李富, 王延周, 严理, 朱四元, 刘头明. 苎麻茎皮环状RNA表达谱分析[J]. 作物学报, 2021, 47(6): 1020-1030.
[5] 唐锐敏, 贾小云, 朱文娇, 印敬明, 杨清. 马铃薯热激转录因子HsfA3基因的克隆及其耐热性功能分析[J]. 作物学报, 2021, 47(4): 672-683.
[6] 岳洁茹, 白建芳, 张风廷, 郭丽萍, 苑少华, 李艳梅, 张胜全, 赵昌平, 张立平. 杂交小麦抗坏血酸过氧化物酶基因克隆及其在种子老化中的潜在功能分析[J]. 作物学报, 2021, 47(3): 405-415.
[7] 杨琴莉, 杨多凤, 丁林云, 赵汀, 张军, 梅欢, 黄楚珺, 高阳, 叶莉, 高梦涛, 严孙艺, 张天真, 胡艳. 棉花花器官突变体的鉴定及候选基因的克隆[J]. 作物学报, 2021, 47(10): 1854-1862.
[8] 何潇, 刘兴, 辛正琦, 谢海艳, 辛余凤, 吴能表. 半夏PtPAL基因的克隆、表达与酶动力学分析[J]. 作物学报, 2021, 47(10): 1941-1952.
[9] 付虹雨, 崔国贤, 李绪孟, 佘玮, 崔丹丹, 赵亮, 苏小惠, 王继龙, 曹晓兰, 刘婕仪, 刘皖慧, 王昕惠. 基于无人机遥感图像的苎麻产量估测研究[J]. 作物学报, 2020, 46(9): 1448-1455.
[10] 左同鸿, 张贺翠, 刘倩莹, 廉小平, 谢琴琴, 胡燈科, 张以忠, 王玉奎, 白晓璟, 朱利泉. 甘蓝自交不亲和性相关基因BoGSTL21的克隆与表达分析[J]. 作物学报, 2020, 46(12): 1850-1861.
[11] 冯韬,官春云. 甘蓝型油菜光敏色素互作因子4 (BnaPIF4)基因克隆和功能分析[J]. 作物学报, 2019, 45(2): 204-213.
[12] 薛晓梦,李建国,白冬梅,晏立英,万丽云,康彦平,淮东欣,雷永,廖伯寿. 花生FAD2基因家族表达分析及其对低温胁迫的响应[J]. 作物学报, 2019, 45(10): 1586-1594.
[13] 谈欢,刘玉汇,李丽霞,王丽,李元铭,张俊莲. 马铃薯块茎花色素苷合成相关R2R3 MYB蛋白基因的克隆和功能
分析
[J]. 作物学报, 2018, 44(7): 1021-1031.
[14] 冯韬,官春云. 甘蓝型油菜芸薹素唑耐受因子(BnaBZR1/BnaBES1)全长CDS克隆与生物信息学分析[J]. 作物学报, 2018, 44(12): 1793-1801.
[15] 马晨雨,詹为民,李文亮,张梦迪,席章营. 玉米ZmNAOD基因的克隆与功能分析[J]. 作物学报, 2018, 44(10): 1433-1441.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!