欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (1): 92-100.doi: 10.3724/SP.J.1006.2010.00092

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

大豆光合气体交换参数的QTL分析

印志同1,2,宋海娜1,孟凡凡1,许晓明3,喻德跃1,*   

  1. 1南京农业大学国家大豆改良中心/作物遗传与种质创新国家重点实验室,江苏南京210095;2江苏沿江地区农科所,江苏南通226541;3南京农业大学生命科学学院,江苏南京210095
  • 收稿日期:2009-05-24 修回日期:2009-07-23 出版日期:2010-01-12 网络出版日期:2009-10-13
  • 通讯作者: 喻德跃, E-mail: dyyu@njau.edu.cn; Tel: 025-84396410; Fax: 025-84396410
  • 基金资助:

    本研究由国家高技术研究发展计划(863计划)项目(2006AA10Z1C1)和国家重点基础研究发展计划(973计划)项目(2004CB117206)资助

QTL Mapping for Photosynthetic Gas-Exchange Parameters in Soybean

YIN Zhi-Tong1,2,SONG Hai-Na1,MENG Fan-Fan1,XU Xiao-Ming3,YU De-Yue1,*   

  1. 1National Center for Soybean Improvement/National Key Laboratory of Crop Genetics and Germplasm Enhancement,Nanjing Agricultural University,Nanjing 210095,China;2Jiangsu Yanjiang Institute of Agricultural Sciences,Nantong 226541,China;3College of Life Sciences,Nanjing Agricultural University,Nanjing 210095,China
  • Received:2009-05-24 Revised:2009-07-23 Published:2010-01-12 Published online:2009-10-13
  • Contact: YU De-Yue,E-mail:dyyu@njau.edu.cn; Tel: 025-84396410; Fax: 025-84396410

摘要:

光合气体交换参数是用来表示植物光合能力的常用指标。利用来自大豆品种科丰1号和南农1138-2的重组自交系群体NJRIKY(184个家系)及其分子遗传图谱,通过两年盆栽试验定位与光合速率、气孔导度、胞间CO2浓度和蒸腾速率有关的QTL。结果表明,4个参数的遗传力中等偏低,0.48~0.60之间;两两间存在极显著正相关关系,相关系数在0.192~0.686之间;两年共检测到15QTL,分别位于C1C2D2EHIO连锁群上,LOD值在2.25~6.31之间,贡献率为4.80%~12.30%;有6QTL在不同环境下稳定表达,它们分别是控制光合速率的qPnC1.1、控制气孔导度的qSCD2.1qSCI.1、控制胞间CO2浓度的qCiI.1qCiO.1,以及控制蒸腾速率的qTrO.1;检测到4个同时控制两个或两个以上参数的标记区间,它们分别是C1连锁群上控制光合速率和气孔导度的sat_311~sct_191区间,E连锁群上控制光合速率、气孔导度和胞间CO2浓度的sat_172~satt268区间,I连锁群上控制气孔导度和胞间CO2浓度的satt726~satt330区间,以及D2连锁群上控制气孔导度和胞间CO2浓度的sat_296~sat_277区间

关键词: 大豆, 光合作用, 气体交换参数, RIL群体, QTL分析

Abstract:

Photosynthesis plays an important role in determining crop’s yield. Photosynthetic gas-exchange parameters have been widely used to reflect the photosynthetic capacity of plant. The present study was conducted to identify QTLs associated with gas-exchange parameters in soybean. Pot experiments were carried out in two successive years to evaluate 184 recombinant inbred lines (RILs) derived from a cross between Kefeng 1 and Nannong 1138-2 for photosynthetic rate, stomatal conductance, intercellar CO2 concentration and transpiration rate at R6 growth stage. The RILs showed transgressive segregation for these parameters, their broad heritability was lower-middle, ranging from 0.48 to 0.60, and significant correlations were observed among them. In total, fifteen QTLs located on seven linkage groups (LG) were identified, six of which expressed stably in two environments. The percentage of variation explained by these QTLs ranged from 4.80% to 12.30%, and with LOD scores from 2.25 to 6.31. Three QTLs for photosynthetic rate were placed on LG C1, E and O respectively, among which the QTL qPnC1.1 (flanked by markers sat_311 and sct_191) was detected in both years; four QTLs for stomatal conductance were placed on LG C1, D2, E and I, respectively, among which QTLs qSCD2.1 (flanked by sat_296 and sat_277) and qSCI.1 (flanked by satt726 and satt330) expressed stably in both years; five QTLs for intercellular CO2 concentration were placed on LG C1, D2, E, I and O, respectively, among which QTLs qCiI.1 (flanked by satt726 and satt330) and qCiO.1 (flanked by satt94 and sat_291) were detected in both years; three QTLs for transpiration rate were placed on LG C2, H and O, respectively, among which QTL qTrO.1 (flanked by BE801128 and satt345) was detected in both years. It was found that in many cases some QTLs for different traits were located in the same regions of LG. A total of four genomic regions were detected controlling different parameters: the marker interval sat_311–sct_191 on LG C1 for photosynthetic rate and stomatal conductance simultaneously, with positive alleles from Nannong 1138-2; the marker interval sat_172–satt268 on LG E for photosynthetic rate, intercellular CO2 concentration and stomatal conductance simultaneously, with positive alleles from Kefeng 1; the marker intervals sat_296–sat_277 on LG D2 and satt726–satt330 on LG I for stomatal conductance and interncellular CO2 concentration simultaneously, with positive alleles from Nanong 1138-2 for the former marker interval, while from Kefeng 1 for the latter one. Compared with other studies, we did not find common QTL that could express stably across different genetic materials, which suggested that the genetic mechanism of photosynthetic gas-exchange parameters is complex in soybean, and further studies need to be performed with more soybean mapping populations in the future.

Key words: Soybean, Photosynthesis, Gas-exchange parameter, RIL population, QTL analysis

[1] Dunwell J M. Transgenic approaches to crop improvement. J Exp Bot, 2000, 51: 487-496
[2] Richards R A. Selectable traits to increase crop photosynthesis and yield of grain crops. J Exp Bot, 2000, 51: 447-458
[3] Sinclair T R, Purcell L C, Sneller C H. Crop transformation and the challenge to increase yield potential. Trends Plant Sci, 2004, 9: 70-75
[4] Morrison M J, Voldgen H D, Cobber E R. Physiological changes from 58 years of genetics improvement of short-season soybean cultivars in Canada. Agron J, 1999, 91: 685-689
[5] Du W-G(杜维广), Zhang G-R(张桂茹), Man W-Q(满为群), Luan X-Y(栾晓燕), Chen Y(陈怡), Gu X-Z(谷秀芝). Study on relationship between soybean photosynthesis and yield. Soybean Sci (大豆科学), 1999, 18(2): 154-159 (in Chinese with English abstract)
[6] Zhu B-G(朱保葛), Bai H-X(柏惠侠), Zhang Y(张艳), Li S-R(李社荣), Chen X-W(陈修文). Relationships between net photosynthetic rate, invertase activity of leaf and seed weight per plant of soybean strains (variety). Soybean Sci (大豆科学), 2000, 19(4): 346-350 (in Chinese with English abstract)
[7] Ojima M. Improvement of leaf photosynthesis in soybean varieties. Bull Natl Inst Agric Sci Ser, 1972, 23: 97-154
[8] Buttery D A, Buzzell R I. Some differences between soybean cultivars observed by growth analysis. Can J Plant Sci, 1972, 52: 13-22
[9] Zhang X-T(张性坦), Zhao C(赵存), Bai X-H(柏惠侠), Lin J-X(林建兴), Zhu Y-G(朱有光), Li N(李诺), Guo Z-B(郭子彪), Chang C-Y(常从云), Lu Z-H(卢增辉), Dai S-J(戴蜀珏), Zhang G-Y(张桂英), Zhao J-J(赵俊杰). Study on physiological indexes of summer soybean variety Youchu 4 yielding 4500 kg ha-1. Sci Agric Sin (中国农业科学), 1996, 29(6): 46-54 (in Chinese with English abstract)
[10] Huang Z-W(黄中文), Zhao T-J(赵团结), Yu D-Y(喻德跃), Chen S-Y(陈受宜), Gai J-Y(盖钧镒). Lodging resistance indices and related QTLs in soybean. Acta Agron Sin (作物学报), 2008, 34(4): 605-611 (in Chinese with English abstract)
[11] Shan D-P(单大鹏), Zhu R-S(朱荣胜), Chen L-J(陈立君), Qi Z-M(齐照明), Liu C-Y(刘春燕), Hu G-H(胡国华), Chen Q-S(陈庆山). Epistatic effects and QE interaction effects of QTLs for protein content in soybean. Acta Agron Sin (作物学报), 2009, 35(1): 41-47 (in Chinese with English abstract)
[12] Zhou R(周蓉), Wang X-Z(王贤智), Chen H-F(陈海峰), Zhang X-J(张晓娟), Shan Z-H(单志慧), Wu X-J(吴学军), Cai S-P(蔡淑平), Qiu D-Z(邱德珍), Zhou X-A(周新安), Wu J-S(吴江生). QTL analysis of lodging and related traits in soybean. Acta Agron Sin (作物学报), 2009, 35(1): 57-65 (in Chinese with English abstract)
[13] Herve D, Fabre F, Berrios E F, Leroux N, Chaarani G A, Planchon C, Sarrafi A, Gentzbittel L. QTL analysis of photosynthesis and water status traits in sunflower (Helianthus annuus L.) under greenhouse conditions. J Exp Bot, 2001, 52: 1857-1864
[14] Hu M-L(胡茂龙), Zhang Y-X(张迎信), Kong L-N(孔令娜), Yang Q-H(杨权海), Wang C-M(王春明), Zhai H-Q(翟虎渠), Wan J-M(万建民). Quantitative trait locus for photosynthesis and its related physiological traits in rice (Oryza sativa L). Acta Agron Sin (作物学报), 2007, 33(2): 183-188 (in Chinese with English abstract)
[15] Teng S, Qian Q, Zeng D L, Kunihiro Y, Fujimoto K, Huang D N, Zhu L H. QTL analysis of leaf photosynthetic rate and related physiological traits in rice (Oryza sativa L.). Euphytica, 2004, 135: 1-7
[16] Vieira A J D, Oliveira D A D, Soares T C B, Schuster I, Piovesan N D, Martinez C A, Barros E G D, Moreira M A. Use of the QTL approach to study of soybean trait relationships in two populations of recombinant inbred lines at the F7 and F8 generations. Braz J Plant Physiol, 2006, 18: 281-290
[17] Cui S-Y(崔世友), Yu D-Y(喻德跃). QTL mapping of photosynthetic rate in soybean. Soybean Sci (大豆科学), 2007, 26(1): 6-10 (in Chinese with English abstract)
[18] Fu S X, Zhan Y, Zhi H J, Gai J Y, Yu D Y. Mapping of SMV resistance gene Rsc-7 by SSR markers in soybean. Genetica, 2006, 128: 63-69
[19] Cregan P B, Jarvik T, Bush A L, Shoemaker R C, Lark K G, Kahler A L, Kaya N, Van Toai T T, Lohnes D G, Chung J, Specht J E. An integrated genetic linkage map of the soybean genome. Crop Sci, 1999, 39: 1464-1490
[20] Song Q, Marek L, Shoemaker R, Lark K, Concibido V, Delannay X, Specht J, Cregan P. A new integrated genetic linkage map of the soybean. Theor Appl Genet, 2004, 109: 122-128
[21] Cui S Y, He X H, Fu S X, Meng Q C, Gai J Y, Yu D Y. Genetic dissection of the relationship of apparent biological yield and apparent harvest index with seed yield and yield related traits in soybean. Aust J Agric Res, 2008, 59: 86-93
[22] Chen H T, Cui S Y, Fu S X, Gai J Y, Yu D Y. Identification of quantitative trait loci associated with salt tolerance during seedling growth in soybean (Glycine max L.). Aust J Agric Res, 2008, 59: 1086-1091
[23] Wang S C, Basten C J, Zeng Z B. Cartographer V.2.5.
[2006]
[2009-5-10] http://statgen.ncsu.edu/qtlcart/WQTLCart.htm
[24] Churchill G A, Doerge R W. Empirical threshold values for quantitative trait mapping. Genetics, 1994, 138: 963-971
[25] Lee S Y, Ahn J H, Cha Y S, Yun D W, Lee M C, Ko J C, Lee K S, Eun M Y. Mapping QTLs related to salinity tolerance of rice at the young seedling stage. Plant Breed, 2007, 126: 43-46
[26] Landjeva S, Neumann K, Lohwasser U, Börner A. Molecular mapping of genomic regions associated with wheat seedling growth under osmotic stress. Biol Plant, 2008, 52: 259-266
[27] Ren G-J(任光俊), Lü X-J(陆贤军), Gao F-Y(高方远), Zheng J-G(郑家国), Lü S-H(吕世华). Inheritance of photosynthesis and improvement on yield in crop. Southwest China J Agric Sci (西南农业学报), 2004, 17(1): 102-105 (in Chinese with English abstract)
[28] Wiebold W J, Shibles R, Green D E. Selection for apparent photosynthesis and related leaf traits in early generations of soybeans. Crop Sci, 1981, 21: 969-973
[29] Simón M R. Gene action and heritability for photosynthetic activity in two wheat crosses. Euphytica, 1994, 76: 235-238
[30] Zhao X Q, Xu J L, Zhao M, Lafitte R, Zhu L H, Fu B Y, Gao Y M, Li Z K. QTLs affecting morph-physiological traits related to drought tolerance detected in overlapping introgression lines of rice (Oryza sativa L.). Plant Sci, 2008, 174: 618-625
[31] Prioul J L, Quarrie S, Causse M, Vienne D. Dissecting complex physiological functions into elementary components through the use of molecular quantitative genetics. J Exp Bot, 1997, 48: 1151-1163
[32] Simko I, McMurry S, Yang H M, Manschot A, Davies P J, Ewing E E. Evidence from polygene mapping for a causal relationship between potato tuber dormancy and abscisic acid content. Plant Physiol, 1997, 115: 1453-1459
[33] Thumma B A, Naidu B P, Chandra A, Cameron D F, Bahnisch L M, Liu C. Identification of causal relationships among traits related to drought resistance in Stylosanthes scabra using QTL analysis. J Exp Bot, 2001, 52: 203-214
[34] Quarrie S A, Laurie D A, Zhu J, Lebreton C, Semikhodskii A, Steed A, Witsenboer H, Calestani C. QTL analysis to study the association between leaf size and abscisic acid accumulation in droughted rice leaves and comparisons across cereals. Plant Mol Biol, 1997, 35: 155-165
[35] Müller-Röber B, Ehrhardt T, Plesch G. Molecular features of stomatal guard cells. J Exp Bot, 1998, 49: 293-304
[36] Mullet J E. Dynamic regulation of chloroplast transcription. Plant Physiol, 1993, 103: 309-313
[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[3] 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557.
[4] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[5] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[6] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209.
[7] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[8] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[9] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[10] 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596.
[11] 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643.
[12] 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366.
[13] 张国伟, 李凯, 李思嘉, 王晓婧, 杨长琴, 刘瑞显. 减库对大豆叶片碳代谢的影响[J]. 作物学报, 2022, 48(2): 529-537.
[14] 禹桃兵, 石琪晗, 年海, 连腾祥. 涝害对不同大豆品种根际微生物群落结构特征的影响[J]. 作物学报, 2021, 47(9): 1690-1702.
[15] 宋丽君, 聂晓玉, 何磊磊, 蒯婕, 杨华, 郭安国, 黄俊生, 傅廷栋, 汪波, 周广生. 饲用大豆品种耐荫性鉴定指标筛选及综合评价[J]. 作物学报, 2021, 47(9): 1741-1752.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!