欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (1): 53-60.doi: 10.3724/SP.J.1006.2010.00053

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

陆地棉种子物理性状QTL定位

刘大军,张建,张轲,王威,张正圣*   

  1. 西南大学农学与生物科技学院 / 农业部生物技术与作物品质改良重点实验室, 重庆 400716
  • 收稿日期:2009-04-30 修回日期:2009-08-23 出版日期:2010-01-12 网络出版日期:2009-11-17
  • 通讯作者: 张正圣, E-mail: zhangzs@swu.edu.cn; Tel: 13883608797
  • 基金资助:

    本研究由国家自然科学基金项目(30971827,30871556,30571187)和国家高技术研究发展计划(863计划)项目(2006AA10Z1D3,2006AA100105)资助。

QTL Mapping of Seed Physical Traits in Upland Cotton (Gossypium hirsutum L.)

LIU Da-Jun,ZHANG Jian,ZHANG Ke,Wang Wei,ZHANG Zheng-Sheng*   

  1. Key Laboratory of biotechnology & Crop Quality Improvement of Agricultural Ministry/college of Agronomy & Biotechnology,Southwest University,Chongqing 400716,China
  • Received:2009-04-30 Revised:2009-08-23 Published:2010-01-12 Published online:2009-11-17
  • Contact: ZHANG Zheng-Sheng, E-mail: zhangzs@swu.edu.cn; Tel: 13883608797

摘要:

定位棉花种子性状的基因对揭示棉花种子性状的遗传规律,以及明确棉花种子、产量、纤维品质等性状间的遗传关系具有重要意义。以(渝棉1×T586) F2:7重组近交系群体构建的遗传连锁图谱,在鉴定270个家系3个环境种子物理性状的基础上,利用MQM作图方法,共检测到34个种子物理性状QTL,包括9个种子重(qSW)5个短绒重(qFW)3个短绒率(qFP)8个种仁重(qKW)6个种子壳重(qHW)3个种仁率(qKP)QTL,它们可解释4.6%~80.1%的性状表型变异。9QTL2个或3个环境中被检测到,其中包括第12染色体显性光子位点的短绒重与短绒率QTL,以及另外7个微效应QTL34QTL分布于15条染色体,其中A染色体组20个,D染色体组14个。有12个染色体区段分布有2个或2个以上的QTL,而且同一染色体区域同一亲本所具有的不同性状QTL的方向大多数与性状表型相关系数的正负一

关键词: 陆地棉, 种子, 物理性状, QTL

Abstract:

Cotton is a leading natural fiber crop in the world, and also provides important plant oil and protein. Cotton fiber is developed from a single cell of seed epidermis, so QTL mapping of seed traits is important to reveal the genetic characteristics of seed traits and to understand the genetic relationship among seed, yield and fiber quality traits. Six seed physical traits of upland cotton recombinant inbred line population identified in three environments presented continuous segregation, and the significant variances existed in the six physical traits were affected by environments. The linkage map constructed from the upland cotton recombinant inbred line population (T586 × Yumian1) F2:7 were used to map QTLs for six seed physical traits by MQM method, and thirty-four QTLs were detected, including nine QTLs for seed weight (qSW), five QTLs for fuzz weight (qFW), three QTLs for fuzz percentage (qFP), eight QTLs for kernel weight (qKW), six QTLs for seed hull weight (qHW), and three QTLs for seed kernel percentage (qKP), with explained phenotypic trait variance rangingfrom 4.6% to 80.1%. Out of thirty-four QTLs, nine QTLs were identified in two or three environments, and they included two large-effect QTLs controlling fuzz weight and fuzz percentage at N1 locus on chromosome 12, and other seven small-effect QTLs. A total of 34 QTLs were mapped on 15 chromosomes, and among them 20 QTLs distributed on A sub-genome and 14 QTLs distributed on D sub-genome. Twelve chromosome regions have two or more QTLs for seed physical traits in each region, and directions of most QTLs for different seed physical traits, which originated from the same parent in the same chromosome region, were consistent with the correlation coefficients of traits.

Key words: Upland cotton, Seed, Physical trait, QTLs

[1] Lusas E W, Jividen G M. Glandless cottonseed: A review of the first 25 years of processing and utilization research. J Am Oil Chem Soc, 1987, 64: 839-854

[2] Alford B B, Liepa G U, Vanbeber A D. Cottonseed protein: What does the future hold? Plant Foods Hum Nutr, 1996, 49: 1-11

[3] Chen Z J, Scheffler B E, Dennis E, Triplett B A, Zhang T Z, Guo W Z, Chen X Y, Stelly D M, Rabinowicz P D, Town C D, Arioli T, Brubaker C, Cantrell R G, Lacape J M, Ulloa M, Chee P, Gingle A R, Haigler C H, Percy R, Saha S, Wilkins T, Wright R J, Deynze A V, Zhu Y X, Yu S X, Abdurakhmonov I, Katageri I, Kumar PA, Rahman M, Zafar Y, Yu J Z, Kohel R J, Wendel J F, Paterson A H. Toward sequencing cotton (Gossypium) genomes. Plant Physiol, 2007, 145: 1303-1310

[4] Benedict C R. Physiology. In: Kohel J J, Lewis C F eds. Cotton. Madison, WI: American Society of Agronomy, 1984. pp 151-200

[5] Balls W L. Studies in Egyptian Cotton, in yearbook khedive. Cairo, Egypt: Agriculture Society for 1906. 1906. pp 29-89

[6] Tanksley S D, Hewitt J. Use of molecular markers in breeding for soluble solids content in tomato: A re-examination. Theor Appl Genet, 1988, 75: 811-823

[7] Reinisch A J, Dong J M, Brubaker C L, Stelly D M, Wendel J F, Paterson A H. A detailed RFLP map of cotton, Gossypium hirsutum × Gossypium barbadense: Chromosome organization and evolution in a disomic polyploid genome. Genetics, 1994, 138: 829-847

[8] Rong J K, Abbey C, Bowers J E, Brubaker C L, Chang C, Chee P W, Delmonte T A, Ding X L, Garza J J, Marler B S, Park C H, Pierce G J, Rainey K M, Rastogi V K, Schulze S R, Trolinder N L, Wendel J F, Wilkins T A, Williams-Coplin T D, Wing R A, Wright R J, Zhao X P, Zhu L H, Paterson A H. A 3347-locus genetic recombination map of sequence-tagged sites reveals features of genome organization, transmission and evolution of cotton (Gossypium). Genetics, 2004, 166: 389-417

[9] Guo W Z, Cai C P, Wang C B, Han Z G, Song X L, Wang K, Niu X W, Wang C, Lu K Y, Shi B, Zhang T Z. A microsatellite-based, gene-rich linkage map reveals genome structure, function, and evolution in Gossypium. Genetics, 2007, 176: 527-541

[10] Lacape J M, Jacobs J, Arioli T, Derijcker R, Forestier-Chiron N, Llewellyn D, Jean J, Thomas E, Viot C. A new interspecific, Gossypium hirsutum ×Gossypiumbarbadense, RIL population: Towards a unified consensus linkage map of tetraploid cotton. Theor Appl Genet, 2009, 119: 281-292

[11] Zhang Z S, Hu M C, Zhang J, Liu D J, Zhang K, Wang W, Wan Q. Construction of a comprehensive PCR-based marker linkage map and QTL mapping for fiber quality traits in (Gossypium hirsutum L.). Mol Breed, 2009, 24: 49-61

[12] Jiang C X, Wright R J, El-Zik K M Paterson A H. Polyploid formation created unique avenues for response to selection in Gossypium (Cotton). Proc Natl Acad Sci USA, 1998, 95: 4419-4424

[13] Shappley Z W, Jenkins J N, Zhu J, Jack C, McCarty J C. Quantitative trait loci associated with agronomic and fiber traits of upland cotton. Cotton Sci, 1998, 2: 153-163

[14] Ulloa M, Meredith R J. Genetic linkage map and QTL analysis of agronomic and fiber quality traits in an intraspecific population. J Cotton Sci, 2000, 4: 161-170

[15] Saranga Y, Menz M, Jiang C X, Wright R J, Yakir D, Paterson A H. Genetic mapping implicates osmotic potential as a major component of crop adaptation to arid conditions. Genome Res, 2002, 11: 1988-1995

[16] Paterson A H, Saranga Y, Menz M, Jiang C X, Wright R J. QTL analysis of genotype × environmental interactions affecting cotton fiber quality. Theor Appl Genet, 2003, 106: 384-396

[17] Zhang Z S, Xiao Y H, Luo M, Li X B, Luo X Y, Hou L, Li D M, Pei Y. Construction of a genetic linkage map and QTL analysis of fiber-related traits in upland cotton (Gossypium hirsutum L.). Euphytica, 2005, 144: 91-99

[18] Shen X L, Guo W Z, Lu Q X, Zhu X F, Yuan Y L, Zhang T Z. Genetic mapping of quantitative trait loci for fiber quality and yield trait by RIL approach in Upland cotton. Euphytica, 2007, 155: 371-380

[19] He D H, Lin Z X, Zhang X L, Nie Y C, Guo X P, Zhang Y X, Li W. QTL mapping for economic traits based on a dense genetic map of cotton with PCR-based markers using the interspecific cross of Gossypium hirsutum × Gossypium barbadense. Euphytica, 2007, 153: 181-197

[20] Chen L(陈利), Zhang Z-S(张正圣), Hu M-C(胡美纯), Wang W(王威), Zhang J(张建), Liu D-J(刘大军), Zheng J(郑靓), Zheng F-M(郑风敏), Ma J(马靖). Genetic linkage map construction and QTL mapping for yield and fiber quality in upland cotton (Gossypium hirsutum L.). Acta Agron Sin (作物学报), 2008, 34(7): 1199-1205 (in Chinese with English abstract)

[21] Qin H D, Guo W Z, Zhang Y M, Zhang T Z. QTL mapping of yield and fiber traits based on a four-way cross population in Gossypium hirsutum L. Theor Appl Genet, 2008, 117: 883-894

[22] Song X L, Zhang T Z. Identification of quantitative trait loci controlling seed physical and nutrient traits in cotton. Seed Sci Res, 2007, 17: 243-251

[23] Wan Q, Zhang Z S, Hu M C, Chen L, Liu D J, Chen X, Wang W, Zheng J. T1 locus in cotton is the candidate gene affecting lint percentage, fiber quality and spiny bollworm (Earias spp.) resistance. Euphytica, 2007, 158: 241-247

[24] Zhang Z-S(张正圣), Zhang F-X(张凤鑫). Improvement of lint yield and fiber quality in upland cotton. Southwest China J Agric Sci (西南农业学报), 1998, 11(suppl): 230-234 (in Chinese with English abstract)

[25] Culp T W, Harrell D C. Breeding quality cotton at the Pee Dee Experiment Station, 1974. Florence, SC, USDA Publications, ARS-S-30

[26] Ndungo V, Demol J, Maréchal R. L’amélioration du cotonnier Gossypium hirsutum L. par hybridation interspécifique. Bull Rech Agron Gembloux, 1988, 23: 27-49

[27] Kohel R J, Lewis C F, Richmond T R. Linkage tests in upland cotton. Gossypium birsutum L. Crop Sci, 1965, 5: 582-585

[28] Endrizzi J E, Turcotte E L, Kohel R J. Qualitative genetics, cytology, and cytogenetics. In: Kohel R J, Lewis C F, eds. Cotton, Am Soc Agron, 1984. pp 81-109

[29] Tang Q-Y(唐启义), Feng M-G(冯明光). Data Processing System (DPS数据处理系统). Beijing: Science Press, 2005 (in Chinese)

[30] Van Ooijen J W. MapQTL 5.0, Software for the Mapping of Quantitative Trait Loci in Experimental Populations. Wageningen, the Netherlands: Plant Research International, 2004

[31] Voorrips R E. MapChart 2.2: Software for the Graphical Presentation of Linkage Maps and QTLs. Wageningen, the Netherlands: Plant Research International, 2006
[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[3] 雷新慧, 万晨茜, 陶金才, 冷佳俊, 吴怡欣, 王家乐, 王鹏科, 杨清华, 冯佰利, 高金锋. 褪黑素与2,4-表油菜素内酯浸种对盐胁迫下荞麦发芽与幼苗生长的促进效应[J]. 作物学报, 2022, 48(5): 1210-1221.
[4] 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738.
[5] 黄莉, 陈玉宁, 罗怀勇, 周小静, 刘念, 陈伟刚, 雷永, 廖伯寿, 姜慧芳. 花生种子大小相关性状QTL定位研究进展[J]. 作物学报, 2022, 48(2): 280-291.
[6] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[7] 李振华, 王显亚, 刘一灵, 赵杰宏. NtPHYB1与光温信号互作调控烟草种子萌发[J]. 作物学报, 2022, 48(1): 99-107.
[8] 张波, 裴瑞琴, 杨维丰, 朱海涛, 刘桂富, 张桂权, 王少奎. 利用单片段代换系鉴定巴西陆稻IAPAR9中的粒型基因[J]. 作物学报, 2021, 47(8): 1472-1480.
[9] 罗兰, 雷丽霞, 刘进, 张瑞华, 金桂秀, 崔迪, 黎毛毛, 马小定, 赵正武, 韩龙植. 利用东乡普通野生稻染色体片段置换系定位产量相关性状QTL[J]. 作物学报, 2021, 47(7): 1391-1401.
[10] 韩玉洲, 张勇, 杨阳, 顾正中, 吴科, 谢全, 孔忠新, 贾海燕, 马正强. 小麦株高QTL Qph.nau-5B的效应评价[J]. 作物学报, 2021, 47(6): 1188-1196.
[11] 马燕斌, 王霞, 李换丽, 王平, 张建诚, 文晋, 王新胜, 宋梅芳, 吴霞, 杨建平. 玉米光敏色素A1基因(ZmPHYA1)在棉花中的转化及分子鉴定[J]. 作物学报, 2021, 47(6): 1197-1202.
[12] 周新桐, 郭青青, 陈雪, 李加纳, 王瑞. GBS高密度遗传连锁图谱定位甘蓝型油菜粉色花性状[J]. 作物学报, 2021, 47(4): 587-598.
[13] 李书宇, 黄杨, 熊洁, 丁戈, 陈伦林, 宋来强. 甘蓝型油菜早熟性状QTL定位及候选基因筛选[J]. 作物学报, 2021, 47(4): 626-637.
[14] 唐婧泉, 王南, 高界, 刘婷婷, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. 甘蓝型油菜SnRK基因家族生物信息学分析及其与种子含油量的关系[J]. 作物学报, 2021, 47(3): 416-426.
[15] 韩贝, 王旭文, 李保奇, 余渝, 田琴, 杨细燕. 陆地棉种质资源抗旱性状的关联分析[J]. 作物学报, 2021, 47(3): 438-450.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!