作物学报 ›› 2010, Vol. 36 ›› Issue (1): 53-60.doi: 10.3724/SP.J.1006.2010.00053
刘大军,张建,张轲,王威,张正圣*
LIU Da-Jun,ZHANG Jian,ZHANG Ke,Wang Wei,ZHANG Zheng-Sheng*
摘要:
定位棉花种子性状的基因对揭示棉花种子性状的遗传规律,以及明确棉花种子、产量、纤维品质等性状间的遗传关系具有重要意义。以(渝棉1号×T586) F2:7重组近交系群体构建的遗传连锁图谱,在鉴定270个家系3个环境种子物理性状的基础上,利用MQM作图方法,共检测到34个种子物理性状QTL,包括9个种子重(qSW)、5个短绒重(qFW)、3个短绒率(qFP)、8个种仁重(qKW)、6个种子壳重(qHW)和3个种仁率(qKP)QTL,它们可解释4.6%~80.1%的性状表型变异。9个QTL在2个或3个环境中被检测到,其中包括第12染色体显性光子位点的短绒重与短绒率QTL,以及另外7个微效应QTL。34个QTL分布于15条染色体,其中A染色体组20个,D染色体组14个。有12个染色体区段分布有2个或2个以上的QTL,而且同一染色体区域同一亲本所具有的不同性状QTL的方向大多数与性状表型相关系数的正负一致。
[1] Lusas E W, Jividen G M. Glandless cottonseed: A review of the first 25 years of processing and utilization research. J Am Oil Chem Soc, 1987, 64: 839-854 [2] Alford B B, Liepa G U, Vanbeber A D. Cottonseed protein: What does the future hold? Plant Foods Hum Nutr, 1996, 49: 1-11 [3] Chen Z J, Scheffler B E, Dennis E, Triplett B A, Zhang T Z, Guo W Z, Chen X Y, Stelly D M, Rabinowicz P D, Town C D, Arioli T, Brubaker C, Cantrell R G, Lacape J M, Ulloa M, Chee P, Gingle A R, Haigler C H, Percy R, Saha S, Wilkins T, Wright R J, Deynze A V, Zhu Y X, Yu S X, Abdurakhmonov I, Katageri I, Kumar PA, Rahman M, Zafar Y, Yu J Z, Kohel R J, Wendel J F, Paterson A H. Toward sequencing cotton (Gossypium) genomes. Plant Physiol, 2007, 145: 1303-1310 [4] Benedict C R. Physiology. In: Kohel J J, Lewis C F eds. Cotton. Madison, WI: American Society of Agronomy, 1984. pp 151-200 [5] Balls W L. Studies in Egyptian Cotton, in yearbook khedive. Cairo, Egypt: Agriculture Society for 1906. 1906. pp 29-89 [6] Tanksley S D, Hewitt J. Use of molecular markers in breeding for soluble solids content in tomato: A re-examination. Theor Appl Genet, 1988, 75: 811-823 [7] Reinisch A J, Dong J M, Brubaker C L, Stelly D M, Wendel J F, Paterson A H. A detailed RFLP map of cotton, Gossypium hirsutum × Gossypium barbadense: Chromosome organization and evolution in a disomic polyploid genome. Genetics, 1994, 138: 829-847 [8] Rong J K, Abbey C, Bowers J E, Brubaker C L, Chang C, Chee P W, Delmonte T A, Ding X L, Garza J J, Marler B S, Park C H, Pierce G J, Rainey K M, Rastogi V K, Schulze S R, Trolinder N L, Wendel J F, Wilkins T A, Williams-Coplin T D, Wing R A, Wright R J, Zhao X P, Zhu L H, Paterson A H. A 3347-locus genetic recombination map of sequence-tagged sites reveals features of genome organization, transmission and evolution of cotton (Gossypium). Genetics, 2004, 166: 389-417 [9] Guo W Z, Cai C P, Wang C B, Han Z G, Song X L, Wang K, Niu X W, Wang C, Lu K Y, Shi B, Zhang T Z. A microsatellite-based, gene-rich linkage map reveals genome structure, function, and evolution in Gossypium. Genetics, 2007, 176: 527-541 [10] Lacape J M, Jacobs J, Arioli T, Derijcker R, Forestier-Chiron N, Llewellyn D, Jean J, Thomas E, Viot C. A new interspecific, Gossypium hirsutum ×Gossypiumbarbadense, RIL population: Towards a unified consensus linkage map of tetraploid cotton. Theor Appl Genet, 2009, 119: 281-292 [11] Zhang Z S, Hu M C, Zhang J, Liu D J, Zhang K, Wang W, Wan Q. Construction of a comprehensive PCR-based marker linkage map and QTL mapping for fiber quality traits in (Gossypium hirsutum L.). Mol Breed, 2009, 24: 49-61 [12] Jiang C X, Wright R J, El-Zik K M Paterson A H. Polyploid formation created unique avenues for response to selection in Gossypium (Cotton). Proc Natl Acad Sci USA, 1998, 95: 4419-4424 [13] Shappley Z W, Jenkins J N, Zhu J, Jack C, McCarty J C. Quantitative trait loci associated with agronomic and fiber traits of upland cotton. Cotton Sci, 1998, 2: 153-163 [14] Ulloa M, Meredith R J. Genetic linkage map and QTL analysis of agronomic and fiber quality traits in an intraspecific population. J Cotton Sci, 2000, 4: 161-170 [15] Saranga Y, Menz M, Jiang C X, Wright R J, Yakir D, Paterson A H. Genetic mapping implicates osmotic potential as a major component of crop adaptation to arid conditions. Genome Res, 2002, 11: 1988-1995 [16] Paterson A H, Saranga Y, Menz M, Jiang C X, Wright R J. QTL analysis of genotype × environmental interactions affecting cotton fiber quality. Theor Appl Genet, 2003, 106: 384-396 [17] Zhang Z S, Xiao Y H, Luo M, Li X B, Luo X Y, Hou L, Li D M, Pei Y. Construction of a genetic linkage map and QTL analysis of fiber-related traits in upland cotton (Gossypium hirsutum L.). Euphytica, 2005, 144: 91-99 [18] Shen X L, Guo W Z, Lu Q X, Zhu X F, Yuan Y L, Zhang T Z. Genetic mapping of quantitative trait loci for fiber quality and yield trait by RIL approach in Upland cotton. Euphytica, 2007, 155: 371-380 [19] He D H, Lin Z X, Zhang X L, Nie Y C, Guo X P, Zhang Y X, Li W. QTL mapping for economic traits based on a dense genetic map of cotton with PCR-based markers using the interspecific cross of Gossypium hirsutum × Gossypium barbadense. Euphytica, 2007, 153: 181-197 [20] Chen L(陈利), Zhang Z-S(张正圣), Hu M-C(胡美纯), Wang W(王威), Zhang J(张建), Liu D-J(刘大军), Zheng J(郑靓), Zheng F-M(郑风敏), Ma J(马靖). Genetic linkage map construction and QTL mapping for yield and fiber quality in upland cotton (Gossypium hirsutum L.). Acta Agron Sin (作物学报), 2008, 34(7): 1199-1205 (in Chinese with English abstract) [21] Qin H D, Guo W Z, Zhang Y M, Zhang T Z. QTL mapping of yield and fiber traits based on a four-way cross population in Gossypium hirsutum L. Theor Appl Genet, 2008, 117: 883-894 [22] Song X L, Zhang T Z. Identification of quantitative trait loci controlling seed physical and nutrient traits in cotton. Seed Sci Res, 2007, 17: 243-251 [23] Wan Q, Zhang Z S, Hu M C, Chen L, Liu D J, Chen X, Wang W, Zheng J. T1 locus in cotton is the candidate gene affecting lint percentage, fiber quality and spiny bollworm (Earias spp.) resistance. Euphytica, 2007, 158: 241-247 [24] Zhang Z-S(张正圣), Zhang F-X(张凤鑫). Improvement of lint yield and fiber quality in upland cotton. Southwest China J Agric Sci (西南农业学报), 1998, 11(suppl): 230-234 (in Chinese with English abstract) [25] Culp T W, Harrell D C. Breeding quality cotton at the Pee Dee Experiment Station, 1974. Florence, SC, USDA Publications, ARS-S-30 [26] Ndungo V, Demol J, Maréchal R. L’amélioration du cotonnier Gossypium hirsutum L. par hybridation interspécifique. Bull Rech Agron Gembloux, 1988, 23: 27-49 [27] Kohel R J, Lewis C F, Richmond T R. Linkage tests in upland cotton. Gossypium birsutum L. Crop Sci, 1965, 5: 582-585 [28] Endrizzi J E, Turcotte E L, Kohel R J. Qualitative genetics, cytology, and cytogenetics. In: Kohel R J, Lewis C F, eds. Cotton, Am Soc Agron, 1984. pp 81-109 [29] Tang Q-Y(唐启义), Feng M-G(冯明光). Data Processing System (DPS数据处理系统). Beijing: Science Press, 2005 (in Chinese) [30] Van Ooijen J W. MapQTL 5.0, Software for the Mapping of Quantitative Trait Loci in Experimental Populations. Wageningen, the Netherlands: Plant Research International, 2004 [31] Voorrips R E. MapChart 2.2: Software for the Graphical Presentation of Linkage Maps and QTLs. Wageningen, the Netherlands: Plant Research International, 2006 |
[1] | 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356. |
[2] | 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102. |
[3] | 雷新慧, 万晨茜, 陶金才, 冷佳俊, 吴怡欣, 王家乐, 王鹏科, 杨清华, 冯佰利, 高金锋. 褪黑素与2,4-表油菜素内酯浸种对盐胁迫下荞麦发芽与幼苗生长的促进效应[J]. 作物学报, 2022, 48(5): 1210-1221. |
[4] | 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738. |
[5] | 黄莉, 陈玉宁, 罗怀勇, 周小静, 刘念, 陈伟刚, 雷永, 廖伯寿, 姜慧芳. 花生种子大小相关性状QTL定位研究进展[J]. 作物学报, 2022, 48(2): 280-291. |
[6] | 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395. |
[7] | 李振华, 王显亚, 刘一灵, 赵杰宏. NtPHYB1与光温信号互作调控烟草种子萌发[J]. 作物学报, 2022, 48(1): 99-107. |
[8] | 张波, 裴瑞琴, 杨维丰, 朱海涛, 刘桂富, 张桂权, 王少奎. 利用单片段代换系鉴定巴西陆稻IAPAR9中的粒型基因[J]. 作物学报, 2021, 47(8): 1472-1480. |
[9] | 罗兰, 雷丽霞, 刘进, 张瑞华, 金桂秀, 崔迪, 黎毛毛, 马小定, 赵正武, 韩龙植. 利用东乡普通野生稻染色体片段置换系定位产量相关性状QTL[J]. 作物学报, 2021, 47(7): 1391-1401. |
[10] | 韩玉洲, 张勇, 杨阳, 顾正中, 吴科, 谢全, 孔忠新, 贾海燕, 马正强. 小麦株高QTL Qph.nau-5B的效应评价[J]. 作物学报, 2021, 47(6): 1188-1196. |
[11] | 马燕斌, 王霞, 李换丽, 王平, 张建诚, 文晋, 王新胜, 宋梅芳, 吴霞, 杨建平. 玉米光敏色素A1基因(ZmPHYA1)在棉花中的转化及分子鉴定[J]. 作物学报, 2021, 47(6): 1197-1202. |
[12] | 周新桐, 郭青青, 陈雪, 李加纳, 王瑞. GBS高密度遗传连锁图谱定位甘蓝型油菜粉色花性状[J]. 作物学报, 2021, 47(4): 587-598. |
[13] | 李书宇, 黄杨, 熊洁, 丁戈, 陈伦林, 宋来强. 甘蓝型油菜早熟性状QTL定位及候选基因筛选[J]. 作物学报, 2021, 47(4): 626-637. |
[14] | 唐婧泉, 王南, 高界, 刘婷婷, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. 甘蓝型油菜SnRK基因家族生物信息学分析及其与种子含油量的关系[J]. 作物学报, 2021, 47(3): 416-426. |
[15] | 韩贝, 王旭文, 李保奇, 余渝, 田琴, 杨细燕. 陆地棉种质资源抗旱性状的关联分析[J]. 作物学报, 2021, 47(3): 438-450. |
|