欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (1): 61-67.doi: 10.3724/SP.J.1006.2010.00061

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

小麦DH群体穗下节间直径、茎壁厚及茎壁面积的QTL定位

桑云1,赵亮2,张坤普2,田纪春2,*,叶宝兴1,*   

  1. 1山东农业大学生命科学学院/作物生物学国家重点实验室,山东泰安,271018;2山东农业大学农学院/作物生物学国家重点实验室/小麦品质育种研究室,山东泰安271018
  • 收稿日期:2009-04-16 修回日期:2009-07-25 出版日期:2010-01-12 网络出版日期:2009-11-17
  • 通讯作者: 田纪春, E-mail: jctian@sdau.edu.cn, Tel: 0538-8242040; 叶宝兴, E-mail: yeb@sdau.edu.cn, Tel: 0538-8242561
  • 基金资助:

    本研究由国家自然科学基金(30671270)和国家重点基础研究发展计划(973计划)项目(2009CB118301)资助。

Mapping QTLs for Uppermost Internode Diameter and Thickness and Area of Culm Wall with Doubled-Haploid Population in Wheat 

SANG Yun1,ZHAO Liang2,ZHANG Kun-Pu2,TIAN Ji-Chun2,*, YE Bao-Xing1,*   

  1. 1 College of Life Science / State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China; 2 College of Agronomy / State Key Laboratory of Crop Biology / Group of Quality Wheat Breeding, Shandong Agricultural University, Tai’an 271018, China
  • Received:2009-04-16 Revised:2009-07-25 Published:2010-01-12 Published online:2009-11-17
  • Contact: TIAN Ji-Chun, E-mail: jctian@sdau.edu.cn, Tel: 0538-8242040; 叶宝兴, E-mail: yeb@sdau.edu.cn, Tel: 0538-8242561

摘要:

小麦品种花培3号和豫麦57杂交获得168DH株系,连续两年在山东泰安种植,利用324SSR标记构建遗传连锁图谱,并基于混合线性模型对控制穗下节间直径、茎壁厚及茎壁面积的QTL遗传效应和环境互作效应进行分析。共检测到10个加性效应位点和6对上位效应位点,其中3个加性位点参与环境互作效应。检测到位于染色体2D3D5D(2)控制穗下节间直径的4个加性QTLs,与控制茎壁厚的3个加性位点相同或相邻,表现出一因多效或紧密连锁效应。两个位于染色体2D5D控制茎壁厚和茎壁面积QTL有较大遗传贡献率,分别为11.37%10.98%,适用于分子标记辅助育种和聚合育种。6对上位性效应遗传贡献率较小、无环境互作效应。

关键词: 小麦, 数量性状位点, 茎壁厚, 穗下节间, DH群体

Abstract:

A population of 168 doubled haploid derived from two elite Chinese wheat (Triticum aestivum L.) cultivars Huapei 3 and Yumai 57, grown in two continuous cropping seasons in Tai’an, Shandong province, was used to investigate the genetic basis of uppermost internode diameter (UID) and thickness (CWT) and area (CWA) of culm wall in wheat. The quantitative trait loci (QTLs) for each trait were analyzed based on the constructed molecular linkage map of this population, including 324 SSR markers covering the whole wheat genome. The additive effects, epistatic effects, and their interactions with environment were identified by using the mixed linear model approach. A total of ten additive QTLs and six pairs of epistatic QTLs were detected. Among the ten QTLs, three had interactions with environment. For UID, four QTLs were detected on chromosomes 2D, 3D, and 5D (two regions), and explained 14.98% of phenotypic variation. Three QTLs for CWT were identified and accounted for 14.41% of the variation in the same or close region chromosome of UID, which showed pleiotropisms or tight linkages. Three QTLs on chromosome 3D, 4B and 5D controlling CWA explained 19.03% of the variation. Two intervals of XCFD53–XWMC18 and XWMC215–XBARC34 on chromosomes 2D and 5D for thickness and area of culm wall explained 11.37% and 10.98% phenotypic variation, respectively. They could be used in marker-assisted selection. For the six epistatic QTLs, the epistatic effects were not significant and without epistatic × environment interactions. These QTLs accounted for 19.01% of the observed phenotypic variation, without any additive effects (except qCWA-3D) of their own but involved in epistatic interactions. Such loci might play the role of modifying agents that tend to activate other loci or modify the action of other loci.

Key words: Wheat, Quantitative trait loci, Culm wll thickness, Uppermost internode, Doubled haploid population

[1] Sasahara H, Fukuta Y, Fukuyama T. Mapping of QTLs for vascular bundle system and spike morphology in rice (Oryza sativa L.). Breed Sci, 1999, 49: 75-81

[2] Pan X-Y(潘学燕), Miao F(苗芳). Survey of wheat microtubule tissue structure. Chin Agric Sci Bull (中国农学通报), 2005, 21(9): 121-123 (in Chinese with English abstract)

[3] Kelbert A J, Spaner D, Briggs K G, King J R. The association of culm anatomy with lodging susceptibility in modern spring wheat genotypes. Euphytica, 2004, 136: 211-221

[4] Zhu L(朱蕾), Shi G-X(施国新), Li Z-S(李振声), Kuang T-Y(匡廷云), Li B(李冰), Wei Q-K(魏其克), Bai K-Z(白克智), Hu Y-X(胡玉熹), Lin J-X(林金星). Anatomical and chemical features of high-yield wheat cultivar with reference to its parents. Acta Bot Sin (植物学报), 2004, 46(5): 565-572 (in Chinese with English abstract)

[5]Börner A, Schumann E, Furste A, Coster H, Leithold B, Röder M S, Weber W E. Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theor Appl Genet, 2002, 105: 921-936

[6]Li S S, Jia J Z, Wei X Y, Zhang X C, Li L Z, Chen H M, Fan Y D, Sun H Y, Zhao X H, Lei T D, Xu Y F, Jiang F S, Wang H G, Li L H. A intervarietal genetic map and QTL analysis for yield traits in wheat. Mol Breed, 2007, 20: 167-178

[7]Cui K H, Peng S B, Xing Y Z, Yu S B, Xu C G, Zhang Q. Molecular dissection of the genetic relationships of source, sink and transport tissue with yield traits in rice. Theor Appl Genet, 2003, 106: 649-658

[8] Qiu Z-F(裘昭峰), Fang C(方陈), Chen H-J(陈洪俭). On the vascular tissue of wheat internodal and its relationship to the grain number per spike. Acta Agron Sin (作物学报).1987, 13(2): 102-102 (in Chinese)

[9]Yuan T(远彤), Guo T-C(郭天财), Luo Y(罗毅), Sun J-H(孙金花). The relationship between leaf structure and grain formation of different kernel types in winter wheat. Acta Agron Sin (作物学报), 1998, 24(6): 876-883 (in Chinese with English abstract)

[10] Shen H-B(申海兵), Yang D-L(杨德龙), Jing R-L(景蕊莲), Chang X-P(昌小平), Qu Y-Y(曲延英). Genetic characters of vascular bundle in the first internode and its relationship with yield components of wheat. J Triticeae Crops (麦类作物学报), 2007, 27(3): 465-470 (in Chinese with English abstract)

[11] Li J-Z(李俊周), Liu Y-Y(刘艳阳), He N(何宁), Cui D-Q(崔党群). Genetic analysis of several quantitative traits of doubled haploid population in wheat. J Triticeae Crops (麦类作物学报), 2005, 25(3): 16-19 (in Chinese with English abstract)

[12] Zhang K-P(张坤普), Zhao L(赵亮), Hai Y(海燕), Chen G-F(陈广凤), Tian J-C(田纪春). QTL mapping for adult-plant resistance to powdery mildew, lodging resistance and internode length below spike in wheat. Acta Agron Sin (作物学报), 2008, 34(8): 1350-1357 (in Chinese with English abstract)

[13]Zhang K P, Zhao L, Tian J C, Chen G F, Jiang X L, Liu B. A genetic map conducted using a doubled haploid population derived from two elite Chinese common wheat (Triticum aestivum L.) varieties. J Integr Plant Biol, 2008, 50: 941-950

[14]Wang D L, Zhu J, Li Z K, Paterson A H. Mapping QTLs with epistatic effects and QTL × environment interactions by mixed linear model approaches. Theor Appl Genet, 1999, 99: 1255-1264

[15] Yang J, Zhu J. Predicting superior genotypes in multiple environments based on QTL effects. Theor Appl Genet, 2005, 110: 1268-1274

[16] Cao G, Zhu J, He C, Gao Y, Yan J, Wu P. Impact of epistasis and QTL × environment interaction on the developmental behavior of plant height in rice (Oryza sativa L.). Theor Appl Genet, 2001, 103: 153-160

[17] Xu M-Z(许明子), Quan X-L(全雪丽), Shi T-Y(石铁源), Zheng C-S(郑成淑), Liu X-H(刘宪虎). Study on conducting bundle character of neck and correlation of several rice breeds. J Agric Sci Yanbian Univ (延边大学农学学报), 2000, 22(2): 81-85 (in Chinese with English abstract)

[18]Ma J(马均), Zhou K-D(周开达), Ma W-B(马文波), Wang X-D(汪旭东), Tian Y-H(田彦华), Ming D-F(明东风), Xu F-Y(许凤英). The characteristics of the tissues of the first internode and their relations to the grain-filling for the different panicle types of rice. Acta Agron Sin (作物学报), 2002, 28(2): 215-220 (in Chinese with English abstract)

[19]Liu G L, Mei H W, Yu X Q, Zou G H, Liu H Y, Hu S P, Li M S, Wu J H, Chen L, Luo L J. QTL analysis of panicle neck diameter, a trait highly correlated with panicle size, under well-watered and drought conditions in rice (Oryza sativa L.). Plant Sci, 2008, 174: 71-77

[20]Zhang K-P(张坤普), Xu X-B(徐宪斌), Tian J-C(田纪春). QTL mapping for grain yield and spike related traits in common wheat. Acta Agron Sin (作物学报) 2009, 35(2): 270-278 (in Chinese with English abstract)

[21]Verma V, Foulkes M J, Worland A J, Sylvester-Bradley R, Caligari P D S. Mapping quantitative trait loci for flag leaf senescence as a yield determinant in winter wheat under optimal and drought-stressed environment. Euphytica, 2004, 135: 255-263

[22]Yang D L, Jing R L, Chang X P. Identification of quantitative trait loci and environmental interactions for accumulation and remobilization of water-soluble carbohydrates in wheat (Triticum aestivum L.) stems. Genetics, 2007, 176: 571-584

[23] Chen H-H(陈华华), Li J(李俊), Wan H-S(万洪深), Wang L-L(王玲玲), Peng Z-S(彭正松), Yany W-Y(杨武云). Microsatellite markers for culm wall thickness and anatomical features of solid stem wheat. Acta Agron Sin (作物学报), 2008, 34(8): 1381-1385 (in Chinese with English abstract)

[24]Atchley W R, Zhu J. Developmental quantitative genetics, conditional epigenetic variability and growth in mice. Genetics, 1997, 147: 765-776
[25] Xing Y-Z(邢永忠), Xu C-G(徐才国),Hua J-P(华金平), Tan Y-F(谈移芳). Analysis of QTL × environment interaction for rice panicle characteristics. Acta Genetic Sin (遗传学报), 2001, 28(5): 439-446 (in Chinese with English abstract)

[26] Anderson J A, Stack R W, Liu S. DNA markers for Fusarium head blight resistance QTL in two wheat populations. Theor Appl Genet, 2001, 102: 1164-1168

[27]Gao Y-M(高用明), Wan P(万平). Studies of marker screening efficiency and corresponding influencing factors in QTL composite interval mapping. Acta Genetic Sin (遗传学报), 2002, 29(6): 555-561 (in Chinese with English abstract)

[28]Wu W-R(吴为人), Tang D-Z(唐定中), Li W-M(李维明). Genetic dissection and molecular dissection of quantita tive traits. Acta Agron Sin (作物学报), 2000, 26(4): 501-507 (in Chinese with English abstract)
[29] Cao G Q, Zhu J, He C X, Gao Y M, Wu P. QTL analysis for epistatic and QTL × environment interactions on final height of rice (Oryza sativa L.). Acta Genetic Sin, 2001, 28: 135-143
[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[3] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[4] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[5] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[6] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[7] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[8] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[9] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[10] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[11] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[12] 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47.
[13] 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62.
[14] 罗江陶, 郑建敏, 蒲宗君, 范超兰, 刘登才, 郝明. 四倍体小麦与六倍体小麦杂种的染色体遗传特性[J]. 作物学报, 2021, 47(8): 1427-1436.
[15] 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!