欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (2): 217-227.doi: 10.3724/SP.J.1006.2010.00217

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

小麦旗叶叶绿素含量及荧光动力学参数与产量的灰色关联度分析

王正航1,武仙山2,昌小平2,李润植1,景蕊莲2,*   

  1. 1山西农业大学,山西太谷 030801;2国家基因资源与遗传改良重大科学工程 / 农业部作物种质资源利用重点实验室 / 中国农业科学院作物科学研究所,北京 100081
  • 收稿日期:2009-07-27 修回日期:2009-12-08 出版日期:2010-02-10 网络出版日期:2009-12-21
  • 通讯作者: 景蕊莲, E-mail: jingrl@caas.net.cn, Tel: 010-82105829
  • 基金资助:

    本研究由国家高技术研究发展计划(863计划)项目(2006AA100201)和国家转基因生物新品种培育重大专项(2008ZX08002-002)资助。

Chlorophyll Content and Chlorophyll Fluorescence Kinetics Parameters of Flag Leaf and Their Gray Relational Grade with Yield in Wheat

WANG Zheng-Hang1,WU Xian-Shan2,CHANG Xiao-Ping2,LI Run-Zhi1,JING Rui-Lian2*   

  1. 1 Shanxi Agricultural University, Taigu 030801, China; 2 National Key Facility for Crop Gene Resources and Genetic Improvement / Key Laboratory of Crop Germplasm Utilization, Ministry of Agriculture / Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, china
  • Received:2009-07-27 Revised:2009-12-08 Published:2010-02-10 Published online:2009-12-21
  • Contact: JING Rui-Lian, E-mail: jingrl@caas.net.cn, Tel: 010-82105829

摘要:

为探讨干旱胁迫条件下小麦旗叶光合性状的变化及其对产量的影响,以小麦RIL群体(旱选10号×鲁麦14) F8代的305个株系及其亲本为材料,分析雨养和灌溉两种水分条件下,开花期和灌浆期旗叶叶绿素含量和叶绿素荧光动力学参数的变化情况、相关关系、遗传力、基因数目以及不同性状与产量的关系。结果表明,在两种水分条件下,RIL群体性状多数表现超亲现象,变异系数为1.12%~67.05%。雨养条件下抗旱亲本旱选10号的旗叶叶绿素含量及叶绿素荧光动力学参数比水地品种鲁麦14表现稳定。两种水分条件下,两个生育时期的旗叶叶绿素含量极显著正相关,而荧光动力学参数相关性表现复杂,FmFvFo/FmFv/Fm之间相关性最高,相关系数大于0.994。在所有性状中,叶绿素含量的遗传力最高;多数性状在雨养条件下的基因数目多于灌溉条件的,控制灌浆期Fv/Fo的基因数目最多,达34对。灰色关联度分析显示,灌浆期FmFvFoFm曲线之间的面积对产量影响较大,可以作为选择抗旱高光效小麦的重要评价指标。

关键词: 小麦, RIL群体, 干旱胁迫, 叶绿素含量, 叶绿素荧光动力学参数, 产量, 灰色关联度

Abstract:

Drought stress impacts photosynthetic characteristics and results in a diminished output in wheat (Triticum aestivum L.). In the variety screening and breeding of wheat for high photosynthetic efficiency and drought resistance, indices for the assessment are of great importance. Although a few investigators have studied the physiological mechanism of photosynthesis on the basis of the chlorophyll fluorescence kinetics parameters with several wheat varieties, the relationships between these parameters and grain yield were not completely clear. The inheritance of chlorophyll related traits under different water conditions has not been reported, especially using genetic populations.To dissect the dynamics of photosynthetic characteristics and the heritabilities of chlorophyll content and chlorophyll fluorescence kinetics parameters in wheat, the authors have constructed a set of recombinant inbred lines (RILs) through crossing a highly drought-resistant variety, Hanxuan 10, and a high-yielding variety Lumai 14 grown in irrigated areas. In this study, 305 RILs of F8 generation were evaluated in well-watered and rainfed (drought stress) environments, and traits of chlorophyll content and 7 chlorophyll fluorescence kinetics parameters in flag leaves were measured at flowering and filling stages. Most of the mean values of traits showed substantial transgressive segregation in the RILs, and the variation coefficients ranged from 1.12% to 67.05% under both water regimes. All traits measurements except for Fo and Fo/Fm in the RILs and their parents were lower under rainfed condition than under the well-watered condition.The chlorophyll content andthe chlorophyll fluorescence kinetics parameters were more stable in Hanxuan 10 than in Lumai 14. Significantly positive correlations were observed in chlorophyll content between either water conditions or growth stages, and the correlation coefficients ranged from 0.499 (P < 0.01) to 0.717 (P < 0.01). However, correlations among the chlorophyll fluorescence kinetics parameters were complex, of which the largest correlation coefficients (more than 0.994) were observed between Fm and Fv and between Fo/Fm and Fv/Fm. Among all the traits tested, chlorophyll content had the highest heritability that was no less than 0.81 in both treatments. According to the primary estimates, most traits under rainfed condition were controlled by more genes than under well-watered condition. For instance, the maximum genes, totally 34, were detected for Fv/Fo at filling stage under rainfed condition; 33 genes were detected for Fv at filling stage under rainfed condition and for Fv/Fm and Fo/Fm at flowering stage under rainfed condition; 32 genes were found for Fm at filling stage under rainfed condition. The gray relational grade analysis indicated that Fv, Fm, and the area between curves of Fo and Fm at filling stage made important impacts on the grain yield. Therefore, they are considered as important indices for in the selection of drought tolerance and high photosynthetic efficiency in wheat.

Key words: Wheat, Recombinant inbred lines, Drought stress, Chlorophyll content, Chlorophyll fluorescence kinetics parameters, Yield, Gray relational grade

[1] Lu C M, Zhang J H. Effects of water stress on photosynthesis, chlorophyll fluorescence and photoinhibition in wheat plants. Aust J Plant Physiol, 1998, 25: 883-892
[2] Inoue T, Inanaga S, Sugimoto Y, El Siddig K. Contribution of pre-anthesis assimilates and current photosynthesis to grain yield, and their relationships to drought resistance in wheat cultivars grown under different soil moisture. Photosynetica, 2004, 42: 99-104
[3] Wardlaw I F. Interaction between drought and chronic high temperature during kernel filling in wheat in a controlled environment. Ann Bot, 2002, 90: 469-476
[4] Cao W-D(曹卫东), Jia J-Z(贾继增), Jin J-Y(金继运). Identification and interaction analysis of QTL for chlorophyll content in wheat seedlings. Plant Nutr Fert Sci (植物营养与肥料学报), 2004, 10(5): 473-478(in Chinese with English abstract)
[5] Walulu R S, Rosenow D T, Wester D B, Nguyen H T. Inheritance of the stay-green trait in sorghum. Crop Sci, 1994, 34: 970-972
[6] Van Oosterom E, Jayachandran R, Bidinger F R. Diallel analysis of the stay-green trait and its components in sorghum. Crop Sci, 1996, 36: 540-555
[7] Borrell A K, Hammer G L, Douglas A C L. Does maintaining green leaf area in sorghum improve yield under drought? I. Leaf growth and senescence. Crop Sci, 2000, 40: 1026-1037
[8] Borrell A K, Hammer G L. Nitrogen dynamics and the physiological basis of stay-green in sorghum. Crop Sci, 2000, 40: 1295-1307
[9] Verma V, Foulkes M J, Worland A J,Sylvester-Bradley R, Caligari P D S, Snape J W. Mapping quantitative trait loci for leaf senescence as a yield determinant in winter wheatunder optical and drought-stressed environments. Euphytica, 2004, 135: 255-263
[10] Hafsi M, Mechmeche W, Bouamama L, Djekoune A, Zaharieva M, Monneveux P. Flag leaf senescence, as evaluated by numerical image analysis, and its relationship with yield under drought in durum wheat. J Agron Crop Sci, 2000, 185: 275-280
[11] Richard R A. Physiological traits used in the breeding of new cultivars for water-scarce environments. In: Proceedings of the 4th International Crop Science Congress, Brisbane, Australia, 2004

[2009-01-11]. http://www.cropscience.org.au/icsc2004/ symposia/1/3/1470_richardsr.htm
[12] Borrell A K, Hammer G L, van Oosterom E. Stay-green: A consequence of balance between supply and demand for nitrogen during grain filling? Ann Appl Biol, 2001, 138: 91-95
[13]Genty B, Briantais J M, Baker N R. The relationship between quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence U. Biochim Biophys Acta, 1989, 990: 87-92
[14] Tambussi E A, Nogués S, Araus J L. Ear of durum wheat under water stress: water relations and photosynthetic metabolism. Planta, 2005, 221: 446-458
[15] Lu C M, Zhang J H. Effects of water stress on photosystem II photochemistry and its thermostability in wheat plants. J Exp Bot, 1999, 50: 1199-1206
[16] Zhang Y J, Zhao C J, Liu L Y, Wang J H, Wang R C. Chlorophyll fluorescence detected passively by difference reflectance spectra of wheat (Triticum aestivum L.) leaf. J Integr Plant Biol, 2005, 47: 1228-1235
[17] Zhao L-Y(赵丽英), Deng X-P(邓西平), Shan L(山仑). Effects of osmotic stress on chlorophyll fluorescence parameters of wheat seedling. Chin J Appl Ecol (应用生态学报), 2005, 16(7): 1261-1264 (in Chinese with English abstract)
[18] Krause G H, Weis E. Chlorophyll fluorescence and photosynthesis: The basics. Annu Rev Plant Physiol Plant Mol Biol,1991, 42: 313-349
[19] Wu C-A(吴长艾), Meng Q-W(孟庆伟), Zou Q(邹琦). Comparative study on the photo oxidative response in different wheat cultivate leaves. Acta Agron Sin (作物学报), 2003, 29(3): 339-344 (in Chinese with English abstract)
[20] Xu C-C(许长成), Li D-Q(李德全), Zou Q(邹琦). Effect of drought on chlorophyll fluorescence and xanthophyll cycle components in winter wheat leaves with different ages. Acta Phytophysiol Sin (植物生理学报), 1999, 25(1): 29-37 (in Chinese with English abstract)
[21] Songsri P, Jogloy S, Kesmala T, Vorasoot N, Akkasaeng C, Patanothai A, Holbrook C C. Heritability of drought resistance traits and correlation of drought resistance and agronomic traits in peanut. Crop Sci, 2008, 48: 2245-2253
[22] Gao S-J(高三基), Luo J(罗俊), Chen R-K(陈如凯), Zhang M-Q(张木清), Pan D-R(潘大仁). Photosynthetic physiology indexes of the drought resistance of sugarcane and its comprehensive evaluation. Acta Agron Sin (作物学报), 2002, 28(1): 94-98 (in Chinese with English abstract)
[23] Grzesiak S, Grzesiak M T, Filek W, Stabryta J. Evaluation of physiological screening tests for breeding drought resistant triticale (× Triticosecale Wittmack). Acta Physiol Plant, 2003, 25: 29-37
[24] Wang S-Q(王士强), Hu Y-G(胡银岗), She K-J(佘奎军), Zhou L-L(周琳璘), Meng F-L(孟凡磊). Gray relational grade analysis of agronomical and physic-biochemical traits related to drought tolerance in wheat. Sci Agric Sin (中国农业科学), 2007, 40(11): 2452-2459 (in Chinese with English abstract)
[25]Wang Y-S(王永士), Guo R-L(郭瑞林), He D-X(贺德先), Yang C-L(杨春玲), Ma C-P(马翠萍), Xie L-F(谢利芬), Guo A-B(郭安斌), Song S-Q(宋世强), Fan H-B(范华兵). Application of grey relational degree analysis to selection of strong-gluten wheat cultivars in Anyang. J Triticeae Crops (麦类作物学报), 2009, 29(2): 271-274 (in Chinese with English abstract)
[26]Wang B(王斌), Zhao B-H(赵帮宏), Zheng G-R(郑桂茹).Grey relational analysis based on space concept and evaluation research on cost-benefit of wheat. Chin Agric Sci Bull (中国农学通报), 2009, 25(7): 264-267 (in Chinese with English abstract)
[27] Cheng X-F(成雪峰), Zhang F-Y(张凤云). Application of grey correlation analysis in summer soybean breeding. Soybean Sci (大豆科学), 2009, 28(1): 31-35 (in Chinese with English abstract)
[28] Zhai H-Q(翟虎渠), Wang J-K(王建康). Application Quantitative Genetics (应用数量遗传). Beijing: China Agricultural Science and Technology Press, 2007. p 62 (in Chinese)
[29] Maxwell K, Johnson G N. Chlorophyll fluorescence: A practical guide. J Exp Bot, 2000, 51: 659-688
[30] Jiang C D, Gao H Y, Zou Q. Changes of donor and accepter side in photosystem II complex induced by iron deficiency in attached soybean and maize leaves. Photosynthetica, 2003,41:267-271
[31] Hu X-H(胡学华), Pu G-L(蒲光兰), Xiao Q-W(肖千文), Liu Y-H(刘永红), Deng J-L(邓家林). Effects of water stress on chlorophyll fluorescence in leaves of plum. Chin J Eco-Agric (中国生态农业学报), 2007, 15(1): 75-77 (in Chinese with English abstract)
[32] Zhang Q-D(张其德), Zhang J-H(张建华), Liu H-Q(刘合芹), Li J-M(李建民). Effects of limited irrigation and different fertilization ways on some photosynthetic functions of flag leaves in winter wheat. Plant Nutr Fert Sci (植物营养与肥料学报), 2000, 6(1): 24-29 (in Chinese with English abstract)
[33] Song L-L(宋丽丽), Guo Y-P(郭延平), Xu K(徐凯). Protective mechanism in photo inhibition of photosynthesis in Citrus unshiu leaves. Chin J Appl Ecol (应用生态学报), 2003, 14(1): 47-50 (in Chinese with English abstract)
[34] Zhang Q-Y(张秋英), Li F-D(李发东), Liu M-Y(刘孟雨). Effect of water stress on the photosynthesis of flag leaf of winter wheat. Agric Res Arid Areas (干旱地区农业研究), 2002, 20(3): 80-84 (in Chinese with English abstract)
[35] Zhang S-R(张守仁). A discussion on chlorophyll fluorescence kinetics parameters and their significance. Chin Bull But (植物学通报), 1999, 16(4): 444-448 (in Chinese with English abstract)
[36] Yang D L, Jing R L, Chang X P, Li W. Genetic analysis of quantitative traits associated with soluble carbohydrate content of doubled haploid population in wheat stem. Genetics,2007, 176: 571-584
[37] Yang D L, Jing R L, Chang X P, Li W. Quantitative trait loci mapping for chlorophyll fluorescence and associated traits in wheat. J Integr Plant Biol,2007, 49: 646-654
[38] Fang B-T(方保停), Guo T-C(郭天才), Wang C-Y(王晨阳), He S-L(何盛莲). Effects of limited irrigation on the kinetics parameters of chlorophyll fluorescence in filling stage and grain yield of winter wheat. Agric Res Arid Areas (干旱地区农业研究), 2007, 25(1): 116-119 (in Chinese with English abstract)
[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[3] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[4] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[5] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[6] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[7] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[8] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[9] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[10] 王霞, 尹晓雨, 于晓明, 刘晓丹. 干旱锻炼对B73自交后代当代干旱胁迫记忆基因表达及其启动子区DNA甲基化的影响[J]. 作物学报, 2022, 48(5): 1191-1198.
[11] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[12] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
[13] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[14] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[15] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!